

Performance. Productivité. Précision.

pferd.com

Sommaire

Outils en carbure monobloc

- Produits phares de la gamme PFERD TOOLS
- Informations générales
- Explication des pictogrammes utilisés
- Formules de calcul des données de coupe
- Explication de la désignation de l'article

3 4 7

7

8

12 15

18

22

25

31

34

36

39

Fraise en carbure monobloc Performance Inox

- Fraise HPC 4 arêtes de coupes HC4M 43
- Fraise HPC 5 arêtes de coupes HCD5M

49

Fraise en carbure monobloc universelle

- Fraise 2 arêtes de coupes UC2
- Fraise 3 arêtes de coupes UC3
- Fraise 4 arêtes de coupes UC4
- Fraise 4 arêtes de coupes UCR4
- Fraise 5 arêtes de coupes UC5
- Fraise 5 arêtes de coupes UCD5
- Fraise finition 6 ou 8 arêtes de coupes UC6/8
- Fraise d'ébavurage Universal UD
- Fraise hémiphérique UB

Fraise en carbure monobloc Performance Aluminium

■ Fraise HPC 3 arêtes de coupes HC3N 57

Foret en carbure monobloc universel

 Foret en carbure monobloc universel U

64

Offre de lancement

1 acheté = 1 offert

Valable sur l'ensemble du catalogue Du 02/09 au 30/11/2025

Produits phares de la gamme PFERD TOOLS

Fraise en carbure monobloc Performance Inox

Combinant une géométrie spécifique au matériau et des revêtements ultramodernes, les fraises en carbure monobloc Performance Inox conviennent parfaitement à l'usinage de l'acier inoxydable et des alliages de titane. Ces outils haute performance sont optimisés pour le fraisage conventionnel ainsi que pour le fraisage dynamique, offrant ainsi une sécurité des processus et une productivité accrues dans le secteur des matériaux difficiles à usiner.

Avantages:

- Contrôle de température optimal lors de l'usinage de matériaux difficiles à usiner.
- Angle d'hélice optimisé pour une meilleure évacuation des copeaux.
- Division inégale et angle d'hélice inégal pour un fonctionnement sans vibrations.

Fraise en carbure monobloc Performance Aluminium

La géométrie spécifique au matériau de nos fraises en carbure monobloc de la gamme Performance Aluminium est optimisée pour les applications les plus exigeantes de l'ébauche de l'aluminium. Ces outils haute performance à usage universel conviennent à un grand nombre de tâches d'usinage, du de l'ébauche à la finition. Selon la version, le fraisage dynamique (fraisage trochoïdal) ainsi que l'utilisation en porte-à-faux important ou dans les cavités profondes est possible.

Avantages:

- Goujure polie et à grand volume pour un contrôle et évacuation optimal des copeaux.
- Sécurité des processus accrue à vitesses de coupe élevées.
- Division inégale pour un fonctionnement sans vibrations.

Foret en carbure monobloc universel

Les forets en carbure monobloc de la gamme Universelle permettent une utilisation universelle sur les principaux matériaux tels que l'acier, l'acier inoxydable, la fonte et les métaux non-ferreux. Pour obtenir une performance maximale, le traitement ultérieur des surfaces est parfaitement adapté à chaque foret.

Avantages:

- Double chanfrein d'appui périphérique pour un processus plus stable et des qualités de perçage de haute qualité.
- Avec canaux de lubrification pour optimiser la durée de vie ainsi que l'évacuation des copeaux.
- Revêtements ultramodernes.

Plus d'informations sur le site Internet

Scannez le code QR pour obtenir des connaissances variées sur les outils et les applications concernant les outils de qualité supérieure de PFERD TOOLS et les matériaux les plus divers.

Informations générales

Outils en carbure monobloc de PFERD TOOLS

Nos outils en carbure monobloc combinent les bénéfices d'une longue et vaste expertise dans le domaine du développement et de la fabrication d'outils de fraisage et de forage à la spécialisation continue dans le domaine du traitement des surfaces et du revêtement. Ainsi, nous vous proposons dès aujourd'hui des solutions pour la fabrication de demain.

Vos avantages en bref:

 Normes de qualité et de fabrication très strictes grâce à des micro et macro-géométries précises combinées à un carbure optimisé pour les applications. Productivité élevée avec performance d'enlèvement de matière optimal.

De vastes compétences à tous les niveaux

Innovations made in Europe

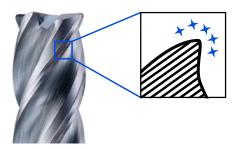
Dans nos centres de compétence innovants pour le traitement des surfaces et le revêtement en Allemagne, Italie et Suisse, nous développons et fabriquons des outils en carbure monobloc qui font la différence. Notre parc de machines compte actuellement 93 meuleuses d'outils CNC ultra-modernes.

Qualité haut de gamme sans concessions

En ce qui concerne la qualité de nos outils en carbure monobloc, rien n'est laissé au hasard. Grâce à une technique de mesure de pointe, nous assurons des tolérances au micromètre près afin de répondre aux exigences les plus strictes en termes de sécurité des processus, de productivité et de précision, voire de les dépasser.

Un choix en adéquation avec l'application

Qu'il s'agisse de tâches d'usinage universelles et courantes ou d'applications haute performance spécifiques au matériau : notre assortiment orienté utilisateur est parfaitement adapté à vos attentes individuelles. Selon l'outil et la version, nous réalisons des outils en carbure monobloc d'un diamètre de 0.1 mm à 32 mm.

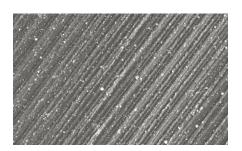

Cumul de compétences dans le traitement des surfaces et le revêtement

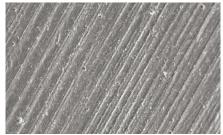
De la préparation de l'outil au post-traitement des couches en passant par l'application du revêtement : Chaque étape du processus vise à vous proposer la meilleure solution d'outillage possible pour vos processus d'ébarbage.

Informations générales

Préparation de l'outil

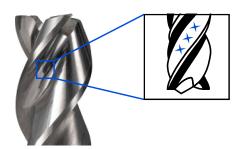
Arêtes de coupe arrondies définies pour une meilleure adhérence du revêtement et une meilleure stabilité de l'arête de coupe, ce qui se traduit par une stabilité et une productivité améliorées de l'outil.


Arête de coupe non arrondie.


Arête de coupe arrondie définie.

Lissage

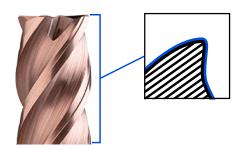
Lissage des rugosités de surface par processus de traitement ultérieur (par ex. suppression des gouttelettes après revêtement), afin de réduire le frottement et d'obtenir un allongement de la durée de vie.

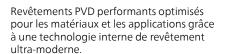

Surface de l'outil avec gouttelettes.

Surface de l'outil sans gouttelettes.

Polissage

Optimisation spécifique aux goujures d'outils des fraises PHC ALU, pour une évacuation contrôlée des copeaux. Le polissage permet une meilleure formation ainsi qu'un meilleur glissement des copeaux afin d'optimiser leur évacuation lors de débits élevés.

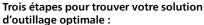



Polissage des goujures pour un contrôle optimal des copeaux.

Informations générales


Revêtements

Revêtement sur surface d'outil non traitée.


Revêtement sur surface d'outil prétraitée.

Conseil technique à la clientèle

Nos conseillers commerciaux et experts techniques se tiennent à votre disposition, y compris sur site, pour toutes les questions relatives à l'optimisation de vos travaux d'enlèvement de matière. Avec vous, PFERD TOOLS élabore des solutions techniques d'application pour l'usinage des matériaux les plus divers. N'hésitez pas à nous consulter. Vous trouverez les adresses de nos agences commerciales partout dans le monde sur le site **www.pferd.com**.

Fabrications spéciales

Si notre gamme de produits ne devait pas suffire pour répondre à vos besoins, nous fabriquons sur demande des outils de fraisage et de forage en carbure monobloc adaptés à vos souhaits et exigences. Nos conseillers commerciaux et experts du service technique se tiennent à votre disposition pour vous aider à analyser vos besoins.

1. Analyse des process

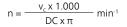
Prenez rendez-vous avec nos conseillers commerciaux et experts du service technique. Vous trouverez les adresses de nos agences commerciales partout dans le monde sur le site **www.pferd.com**.

2. Fabrication

Les collaboratrices et collaborateurs de notre site de fabrication réalisent un dessin technique qui servira à la fabrication spéciale.

3. Utilisation

La qualité, les performances et la rentabilité des outils PFERD TOOLS sauront vous convaincre.


Fraise en carbure monobloc

Explication des pictogrammes utilisés

Géométrie – Versions	DIN 6527L DIN 6527 L	Avance xyz
45° Chanfrein 45°	DIN DIN 6527 K	Division inégale
	6527 K	Denture à pas variable
90° Angle vif	Forme de la tige	≠
Rayon	Queue cylindrique HA selon DIN 6535	Applications Contournage
Conique 60°	Queue Weldon HB selon DIN 6535 avec surface d'entraînement latérale Outil – Version	Rainurage
Conique 90°	Dégagement arrière	Ramping
Hémisphérique	Goujures polis	Perçage
Géométrie – Nombre de tranchants	Denture ébauche	Chanfreinage/ébavurage
Nombre de dents Géométrie – angle d'hélice	Bise copeaux	Fraisage de profilés
	Sens d'avance	
Angle d'hélice	Avance xy	Fraisage de profilés utilisation épaulement
Angle d'hélice inégal	Avance xy(z)	Fraisage de profilés utilisation pointe
Norme		
Norme d'usine		Fraisage dynamique / fraisage trochoïdal

Formules de calcul des données de coupe

$$v_c = \frac{DC \times \pi \times n}{1.000} \text{ m/min}$$

 $v_f = f_z x ZEFP x n mm/min$

Vitesse de rotation

Vitesse de coupe

Vitesse d'avance

Explication des abréviations

- a_p = Profondeur de coupe
- $a_e^F = Largeur de coupe$
- DC = Diamètre de la fraise en [mm]
- f_z = avance par dent en [mm/dent]
 n = Vitesse de rotation de la broche en [tr/min]
- v_c = vitesse de coupe en [m/min]
- v_f = Vitesse d'avance en [mm/min]
- ZEFP = Nombre de dents effectif

Fraise en carbure monobloc

Explication de la désignation de l'article

SCM - UC4 - M100C - M72HB AL40

① Groupe d'outils

SCM = Fraise carbure monobloc sur le site (Solid Carbide Mill)

② Gamme

U = Universelle H = High Performance

③ Forme

B = Fraise hémisphérique (Ballnose)
D = Fraise à chanfreiner/ébavurer (Deburring/Chamfering)
C = Fraise cylindrique coupe au centre (Cylindrical end mill with centre cut)
CR = Fraise cylindrique avec profil ravageur (ébauche) (Cylindrical end mill for roughing)
CD = Fraise cylindrique avec brise copeaux (Cylindrical end mill with chip divider)

4 Nombre d'arêtes de coupe

⑤ Groupe de matériaux

Groupes ISO P, M, K, N, S, H, O. Vide, si non spécifié.

© Unités

M = métrique I = impérial

⑦ Diamètre du tranchant

Métrique : $mm \times 10$ Exemple : D 10,5 mm = 105

® Version angulaire

A = Incliné (Angled) Exemple : A90° C = Chanfrein (Chamfer) R = Rayon avec taille Exemple : R40 pour 4,0 mm S = Aiguisé (Sharp)

XS: Extra court
S: Court
M: Moyen
L: Long
XL: Extra long

XXL: Extra extra long (>4xD)

10 Longueur totale

Métrique : Longueur totale LF en mm. Pas indiqué pour les fraises d'ébavurage.

1 Forme de la tige

HA = Tige cylindrique HB = Tige Weldon (selon DIN 6535) Diamètre de tige supplémentaire pour version avec DC < 6 mm et DCON = 6 mm

12 *

13 *

Matériau de coupe

*En option

Explication des abréviations de la ISO 13399

APMX = Profondeur de coupe maximale

CHW = Largeur de chanfrein DC = Diamètre de coupe DCON = Diamètre de queue

DN = Diamètre de dégagement arrière KAPR = Angle d'arête de coupe de l'outil

LF = Longueur totale
LU = Longueur utile
RE = Rayon de coupe
ZEFP = Nombre de dents

Aperçu de la compatibilité avec les matériaux

Usage universel

Gro	oupe de matéria	aux	Fraise hémiphérique UB	Fraise d'ébavurage universelle UD	Fraise 2 arêtes de coupes UC2	Fraise 3 arêtes de coupes UC3	Fraise 4 arêtes de coupes UC4	Fraise 4 arêtes de coupes UCR4	Fraise 5 arêtes de coupes UC5	Fraise 5 arêtes de coupes UCD5	Fraise finition 6 ou 8 arêtes de coupes UC6/8
P	Acier	Tous les types d'acier et d'acier jusqu'à 1 400 N/mm²	•	•	•	•	•	•	•	•	•
M	Acier	Ferritique et martensitique	•	•	•	•	•	0	•	•	•
	inoxydable	Austénitique	•	•	•	•	•	0	•	•	•
		Réfractaire et ferritique- austénitique (Duplex)	0	•	0	0	0	0	0	0	0
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	•	•	•	•	•	•	•	•	•
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	•	•	•	•	•	•	•	•	•
N	Métaux non	Aluminium	0	•	0	0	0	0	0	0	0
	ferreux	Cuivre, laiton, bronze, laiton rouge	•	•	0	0	0	0	0	0	0
S	Superalliages et alliages de	Superalliages réfractaires à base Fe, Ni et Co		0		0	0		0	0	•
	titane	Titane pur		0		0	0	0	0	0	•
		Alliages de titane		0		0	0	0	0	0	•
Н	Alliages de titane	Aciers traités et trempés jusqu'à 50 HRC	•	0	0	0	0	0	0	0	0
		Aciers trempés jusqu'à 58 HRC	0								
		Aciers trempés à partir de 58 HRC									
0	Autres	Matières thermoplastiques	0	0	0	0	0		0	0	0
		Plastiques thermodurcissables									
	N	Matières plastiques renforcées de fibres PRFV/PRFC, graphite									

• = parfaitement adapté

 \circ = adapté

Offre de lancement

1 acheté = 1 offert

Valable sur l'ensemble du catalogue Du 02/09 au 30/11/2025

Fraise 2 arêtes de coupes UC2

Gro	roupe de matériaux		Cahier des charges/ exemple de matériau	Aptitude	Rainu	ırage da	ns le pl	ein a _p	= 1 x D	C; a _e = 1	x DC		
					Vitesse de coupe v _c					nt f¸ [mı trancha			
					[m/min]	4	5	6	8	10	12	16	20
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²	•	90	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
			500 jusqu'à 700 N/mm²	•	85	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
			700 jusqu'à 1 000 N/mm²	•	80	0,02	0,02	0,02	0,03	0,04	0,045	0,055	0,07
			1 000 jusqu'à 1 400 N/mm ²	•	70	0,02	0,02	0,02	0,03	0,04	0,045	0,055	0,07
M	Acier inoxy-	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	55	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
	dable	Austénitique	p.ex. 1.4301, 1.4571	•	55	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
		Réfractaire et ferritique-austéniti	ique (Duplex)	0	45	0,018	0,018	0,02	0,025	0,03	0,04	0,05	0,065
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	80	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	65	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
N	Métaux non	Aluminium	Alu jusqu'à 10% Si	0	135	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
	ferreux		Alu > 10% Si	0	110	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
		Cuivre, laiton, bronze et laiton ro	uge	0	90	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
S	Superalliages	Superalliages réfractaires	À base Fe, Ni et Co										
	et alliages de titane	Titane pur											
		Alliages de titane											
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC	0	60	0,02	0,02	0,02	0,03	0,04	0,055	0,06	0,07
	titane		jusqu'à 58 HRC										
			> 58 HRC										
0	Autres	Matières thermoplastiques		0	90	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
		Plastiques thermodurcissables											
		Matières plastiques renforcées d	e fibres PRFV/PRFC, graphite										

^{• =} parfaitement adapté

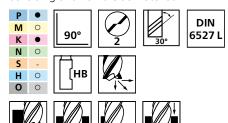
 $[\]circ$ = adapté

Fraise 2 arêtes de coupes UC2

Gro	oupe de matéria	эих	Cahier des charges/ exemple de matériau	Aptitude		Contou	rnage a	, = 1 x D	C; a _e = 0	,1 x DC			
					Vitesse de coupe v _c		ave		de den			m]	
		,			[m/min]	4	5	6	8	10	12	16	20
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	210	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
		d'acier	500 jusqu'à 700 N/mm²	•	190	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
			700 jusqu'à 1 000 N/mm²	•	170	0,025	0,025	0,035	0,045	0,06	0,07	0,08	0,1
			1 000 jusqu'à 1 400 N/mm²	•	150	0,025	0,025	0,035	0,045	0,06	0,07	0,08	0,1
M	Acier inoxy-	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	120	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
	dable	Austénitique	p.ex. 1.4301, 1.4571	•	120	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
		Réfractaire et ferritique-austér	itique (Duplex)	0	90	0,025	0,025	0,033	0,038	0,045	0,06	0,08	0,1
K		Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	180	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	140	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
N	Métaux non	Aluminium	Alu jusqu'à 10% Si	0	250	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
	ferreux		Alu > 10% Si	0	200	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
		Cuivre, laiton, bronze et laiton	rouge	0	200	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
S	Superalliages	Superalliages réfractaires	À base Fe, Ni et Co										
	et alliages de titane	Titane pur											
		Alliages de titane											
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC	0	75	0,025	0,025	0,035	0,045	0,06	0,07	0,08	0,1
	titane		jusqu'à 58 HRC										
			> 58 HRC										
0	Autres	Matières thermoplastiques		0	200	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
		Plastiques thermodurcissables											
		Matières plastiques renforcées	de fibres PRFV/PRFC, graphite										

^{• =} parfaitement adapté

^{○ =} adapté


Fraise 2 arêtes de coupes UC2

Version angle vif - métrique

Fraise pour le rainurage; contournage; ramping; perçage; etc.. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

- Productivité élevée avec performance d'enlèvement de matière optimal.
- Longue durée de vie grâce au revêtement moderne de l'outil.
- Bonne évacuation des copeaux grâce à l'espace entre dents particulièrement grand.

DC [mm]	DCON [mm]	APMX [mm]	LF [mm]	ZEFP		Réf. article	Désignation	Prix/pièce EUR
Longueur H	В			нв				
4	6	8	57	2	1	23000124	SCM-UC2-M040S-S57HB6 AL40	35,37
5	6	10	57	2	1	23000125	SCM-UC2-M050S-S57HB6 AL40	35,37
6	6	10	57	2	1	23000126	SCM-UC2-M060S-S57HB AL40	35,37
8	8	16	63	2	1	23000127	SCM-UC2-M080S-S63HB AL40	44,89
10	10	19	72	2	1	23000128	SCM-UC2-M100S-S72HB AL40	61,22
12	12	22	83	2	1	23000129	SCM-UC2-M120S-S83HB AL40	89,77
16	16	26	92	2	1	23000130	SCM-UC2-M160S-S92HB AL40	152,36

12 SCT Prix par pièce hors TVA.

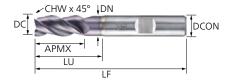
Fraise 3 arêtes de coupes UC3

Gro	oupe de mat	ériaux	Cahier des charges/ exemple de matériau	Aptitude	Ra	inurage	e dans lo	e plein a	a _p = 1 x	DC; a _e =	= 1 x DC			
					Vitesse de coupe v _c		ā				mm/de hant Do			
					[m/min]	3	4	5	6	8	10	12	16	20
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²		130	0,01	0,016	0,03	0,03	0,04	0,06	0,06	0,085	0,1
		d'acier	500 jusqu'à 700 N/mm²	•	120	0,01	0,016	0,03	0,03	0,04	0,06	0,06	0,085	0,1
			700 jusqu'à 1 000 N/mm²	•	100	0,01	0,016	0,02	0,02	0,03	0,045	0,045	0,06	0,07
			1 000 jusqu'à 1 400 N/mm²	•	80	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	45	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	•	50	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
		Réfractaire et ferritique-austér	itique (Duplex)	0	40	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	130	0,01	0,016	0,03	0,03	0,04	0,06	0,06	0,085	0,1
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	100	0,01	0,016	0,03	0,03	0,04	0,06	0,06	0,085	0,1
N	Métaux	Aluminium	Alu jusqu'à 10% Si	0	200	0,03	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
	non ferreux		Alu > 10% Si	0	180	0,03	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
		Cuivre, laiton, bronze et laiton	rouge	0	200	0,03	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co	0	35	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
	liages et alliages de	Titane pur		0	100	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
	titane	Alliages de titane		0	50	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC	0	60	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
	titane		jusqu'à 58 HRC											
			> 58 HRC											
0	Autres Matières thermoplastiques		0	110	0,025	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13	
		Plastiques thermodurcissables												
		Matières plastiques renforcées												

^{• =} parfaitement adapté

^{○ =} adapté

Fraise 3 arêtes de coupes UC3


Gro	oupe de mate	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Coi	ntourna	ge a, =	1 x DC; a	a _e = 0,4	x DC			
					Vitesse de coupe v _c						[mm/do	-		
					[m/min]	3	4	5	6	8	10	12	16	20
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	180	0,01	0,016	0,035	0,035	0,045	0,075	0,075	0,1	0,12
		d'acier	500 jusqu'à 700 N/mm²	•	160	0,01	0,016	0,035	0,035	0,045	0,075	0,075	0,1	0,12
			700 jusqu'à 1 000 N/mm²	•	150	0,01	0,016	0,025	0,025	0,035	0,055	0,055	0,07	0,085
			1 000 jusqu'à 1 400 N/mm²	•	110	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	70	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	•	75	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
		Réfractaire et ferritique-austé	nitique (Duplex)	0	60	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	180	0,01	0,016	0,035	0,035	0,045	0,075	0,075	0,1	0,12
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	140	0,01	0,016	0,035	0,035	0,045	0,075	0,075	0,1	0,12
N	Métaux	Aluminium	Alu jusqu'à 10% Si	0	250	0,04	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
	non ferreux		Alu > 10% Si	0	200	0,04	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
		Cuivre, laiton, bronze et laiton	rouge	0	200	0,04	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co	0	45	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
	liages et alliages de	Titane pur		0	110	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
	titane	Alliages de titane		0	60	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC	0	75	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
	titane		jusqu'à 58 HRC											
			> 58 HRC											
0	Autres	utres Matières thermoplastiques				0,04	0,05	0,05	0,065	0,075	0,09	0,12	0,16	0,2
	Plastiques thermodurcissables													
		Matières plastiques renforcée	s de fibres PRFV/PRFC, graphite											

^{• =} parfaitement adapté

^{○ =} adapté

Fraise 3 arêtes de coupes UC3

Version angulaire chanfrein - métrique

Fraise pour e rainurage; contournage; ramping; perçage; ébauche; etc.. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

- Productivité élevée avec performance d'enlèvement de matière optimal.
- Longue durée de vie grâce au revêtement moderne de l'outil.
- Version avec dégagement arrière.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	CHW [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
Longue	ur HB			δ		нв					
3	6	2,8	8	57	11	0,1	3	1	23000131	SCM-UC3-M030C-M57HB6 AL40	35,37
4	6	3,7	11	57	16	0,1	3	1	23000132	SCM-UC3-M040C-M57HB6 AL40	35,37
5	6	4,7	13	57	18	0,15	3	1	23000133	SCM-UC3-M050C-M57HB6 AL40	35,37
6	6	5,6	13	57	18	0,2	3	1	23000134	SCM-UC3-M060C-M57HB AL40	35,37
8	8	7,5	19	63	26	0,2	3	1	23000135	SCM-UC3-M080C-M63HB AL40	44,89
10	10	9,5	22	72	32	0,2	3	1	23000136	SCM-UC3-M100C-M72HB AL40	61,22
12	12	11	26	83	36	0,3	3	1	23000137	SCM-UC3-M120C-M83HB AL40	89,77
16	16	15	32	92	42	0,3	3	1	23000138	SCM-UC3-M160C-M92HB AL40	152,36

Offre de lancement

1 acheté = 1 offert

Valable sur l'ensemble du catalogue Du 02/09 au 30/11/2025

Prix par pièce hors TVA.

Fraise 4 arêtes de coupes UC4

Gro	oupe de mate	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Rainura	age dan	s le plei	n a. = 1	x DC: a.	. = 1 x D			
					Vitesse de coupe v _c			Av	ance de	dent f _z	mm/de chant D	nt]		
					[m/min]	3	4	5	6	8	10	12	16	20
Р	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²	•	135	0,01	0,016	0,03	0,03	0,04	0,06	0,06	0,085	0,1
		u aciei	500 jusqu'à 700 N/mm²	•	130	0,01	0,016	0,03	0,03	0,04	0,06	0,06	0,085	0,1
			700 jusqu'à 1 000 N/mm²	•	110	0,01	0,016	0,02	0,02	0,03	0,045	0,045	0,06	0,07
			1 000 jusqu'à 1 400 N/mm²	•	80	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	70	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	•	60	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
		Réfractaire et ferritique-austé	nitique (Duplex)	0	50	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
K	(6	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	130	0,01	0,016	0,03	0,03	0,04	0,06	0,06	0,085	0,1
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	100	0,01	0,016	0,03	0,03	0,04	0,06	0,06	0,085	0,1
N	Métaux	Aluminium	Alu jusqu'à 10% Si	0	200	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,1	0,11
	non ferreux		Alu > 10% Si	0	180	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,1	0,11
		Cuivre, laiton, bronze et laiton	rouge	0	200	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,1	0,11
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co	0	35	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
	liages et alliages de	Titane pur		0	100	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
	titane	Alliages de titane		0	50	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC	0	60	0,01	0,012	0,02	0,02	0,03	0,045	0,045	0,06	0,07
	titane		jusqu'à 58 HRC											
			> 58 HRC											
0	Autres	Matières thermoplastiques		0	180	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,1	0,11
		Plastiques thermodurcissables	5											
		Matières plastiques renforcée graphite	s de fibres PRFV/PRFC,											

^{• =} parfaitement adapté

^{∘ =} adapté

Fraise 4 arêtes de coupes UC4

Gr	oupe de mat	ériaux	Cahier des charges/ exemple de matériau	Aptitude										
				Ā	Vitesse de coupe v _c	Con	tournag	ge a _p = 2 Ava avec di	nce de	dent f _z	mm/de			
					[m/min]	3	4	5	6	8	10	12	16	20
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	180	0,01	0,016	0,035	0,035	0,045	0,075	0,075	0,1	0,12
		d'acier	500 jusqu'à 700 N/mm²	•	160	0,01	0,016	0,035	0,035	0,045	0,075	0,075	0,1	0,12
			700 jusqu'à 1 000 N/mm²	•	150	0,01	0,016	0,025	0,025	0,035	0,055	0,055	0,07	0,085
			1 000 jusqu'à 1 400 N/ mm²	•	110	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	85	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	•	75	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
		Réfractaire et ferritique-austén	tique (Duplex)	0	65	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
K	(C Fc et	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	180	0,01	0,016	0,035	0,035	0,045	0,075	0,075	0,1	0,12
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	140	0,01	0,016	0,035	0,035	0,045	0,075	0,075	0,1	0,12
N	Métaux	Aluminium	Alu jusqu'à 10% Si	0	230	0,03	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
	non ferreux		Alu > 10% Si	0	210	0,03	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
		Cuivre, laiton, bronze et laiton i	ouge	0	230	0,03	0,035	0,035	0,04	0,05	0,06	0,08	0,1	0,13
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co	0	45	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
	liages et alliages de	Titane pur		0	120	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
	titane	Alliages de titane		0	70	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC	0	75	0,01	0,012	0,025	0,025	0,035	0,055	0,055	0,07	0,085
	titane		jusqu'à 58 HRC											
			> 58 HRC											
0	Autres	Matières thermoplastiques		0	210	0,04	0,04	0,06	0,06	0,07	0,07	0,085	0,1	0,12
		Plastiques thermodurcissables												
		Matières plastiques renforcées graphite	de fibres PRFV/PRFC,											

^{• =} parfaitement adapté

^{○ =} adapté

Fraise 4 arêtes de coupes UC4

20

20

19,5

38

104

54

0,4

Version angulaire chanfrein - métrique

Fraise 4 dents avec hélices différenciées et division irrégulière, pour opérations d'ébauche et finition à débit des copeaux élevé et ramping. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

- Productivité élevée avec performance d'enlèvement de matière optimal.
- Longue durée de vie grâce au revêtement moderne de l'outil.

SCM-UC4-M200C-M104HB AL40

247,58

■ Version avec dégagement arrière.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	CHW [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR			
Longue	ur HA			δ		НА								
3	6	2,8	8	57	18	0,13	4	1	23000148	SCM-UC4-M030C-M57HA6 AL40	34,28			
4	6	3,6	11	57	21	0,13	4	1	23000149	SCM-UC4-M040C-M57HA6 AL40	34,28			
5	6	4,6	13	57	21	0,2	4	1	23000150	SCM-UC4-M050C-M57HA6 AL40	34,28			
6	6	5,5	13	57	21	0,2	4	1	23000151	SCM-UC4-M060C-M57HA AL40	34,28			
8	8	7,5	19	63	27	0,2	4	1	23000152	SCM-UC4-M080C-M63HA AL40	43,53			
10	10	9,5	22	72	32	0,2	4	1	23000153	SCM-UC4-M100C-M72HA AL40	59,44			
12	12	11,5	26	83	38	0,3	4	1	23000154	SCM-UC4-M120C-M83HA AL40	87,20			
16	16	15,5	32	92	44	0,3	4	1	23000155	SCM-UC4-M160C-M92HA AL40	147,86			
20	20	19,5	38	104	54	0,4	4	1	23000156	SCM-UC4-M200C-M104HA AL40	240,36			
Longue	ur HB			δ		НВ								
3	6	2,8	8	57	18	0,13	4	1	23000139	SCM-UC4-M030C-M57HB6 AL40	35,37			
4	6	3,6	11	57	21	0,13	4	1	23000140	SCM-UC4-M040C-M57HB6 AL40	35,37			
5	6	4,6	13	57	21	0,2	4	1	23000141	SCM-UC4-M050C-M57HB6 AL40	35,37			
6	6	5,5	13	57	21	0,2	4	1	23000142	SCM-UC4-M060C-M57HB AL40	35,37			
8	8	7,5	19	63	27	0,2	4	1	23000143	SCM-UC4-M080C-M63HB AL40	44,89			
10	10	9,5	22	72	32	0,2	4	1	23000144	SCM-UC4-M100C-M72HB AL40	61,22			
12	12	11,5	26	83	38	0,3	4	1	23000145	SCM-UC4-M120C-M83HB AL40	89,77			
16	16	15,5	32	92	44	0,3	4	1	23000146	SCM-UC4-M160C-M92HB AL40	152,36			

4

23000147

18 SCT Prix par pièce hors TVA.

Fraise 4 arêtes de coupes UC4

Version angulaire rayon - métrique

Fraise pour l'utilisation polyvalente du dégrossissage aux travaux de finition. La version avec rayon permet le fraisage de profilés de formes libres. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

- Productivité élevée avec performance d'enlèvement de matière optimal.
- Longue durée de vie grâce au revêtement moderne de l'outil.
- Version avec dégagement arrière.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
Longue	ur HB			δ		нв					
8	8	7,46	19	63	27	0,5	4	1	23000157	SCM-UC4-M080R05-M63HB AL40	51,68
						1	4	1	23000158	SCM-UC4-M080R10-M63HB AL40	51,68
						1,5	4	1	23000159	SCM-UC4-M080R15-M63HB AL40	51,68
						2	4	1	23000160	SCM-UC4-M080R20-M63HB AL40	51,68
10	10	9,5	22	72	32	0,5	4	1	23000161	SCM-UC4-M100R05-M72HB AL40	70,47
						1	4	1	23000162	SCM-UC4-M100R10-M72HB AL40	70,47
						1,5	4	1	23000163	SCM-UC4-M100R15-M72HB AL40	70,47
						2	4	1	23000164	SCM-UC4-M100R20-M72HB AL40	70,47
12	12	11,5	26	83	38	0,5	4	1	23000165	SCM-UC4-M120R05-M83HB AL40	103,24
						1	4	1	23000166	SCM-UC4-M120R10-M83HB AL40	103,24
						1,5	4	1	23000167	SCM-UC4-M120R15-M83HB AL40	103,24
						2	4	1	23000168	SCM-UC4-M120R20-M83HB AL40	103,24
16	16	15,5	32	92	44	1	4	1	23000169	SCM-UC4-M160R10-M92HB AL40	175,21
						1,5	4	1	23000170	SCM-UC4-M160R15-M92HB AL40	175,21
						2	4	1	23000171	SCM-UC4-M160R20-M92HB AL40	175,21
20	20	19,5	38	104	54	1	4	1	23000172	SCM-UC4-M200R10-M104HB AL40	284,71
						2	4	1	23000173	SCM-UC4-M200R20-M104HB AL40	284,71

Prix par pièce hors TVA.

Fraise 4 arêtes de coupes UCR4

Gro	oupe de mat	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Rainur	age dan	s le plei	n a _p = 1	x DC; a	, = 1 x D			
					Vitesse de coupe v _c				ance de iamètre					
					[m/min]	3	4	5	6	8	10	12	16	20
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	140	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
		d'acier	500 jusqu'à 700 N/mm²	•	120	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
			700 jusqu'à 1 000 N/mm²	•	100	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
			1 000 jusqu'à 1 400 N/mm²	•	70	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
М	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	0	50	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	0	45	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
		Réfractaire et ferritique-austé	nitique (Duplex)	0	35	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	120	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB											
N	Métaux	Aluminium	Alu jusqu'à 10% Si											
	non ferreux		Alu > 10% Si											
		Cuivre, laiton, bronze et laiton	rouge											
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co											
	liages et alliages de	Titane pur		0	30	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
	titane	Alliages de titane		0	20	0,017	0,022	0,028	0,030	0,040	0,050	0,060	0,080	0,100
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC											
	titane		jusqu'à 58 HRC											
			> 58 HRC											
0	Autres	Matières thermoplastiques												
		Plastiques thermodurcissables	S											
		Matières plastiques renforcée graphite	s de fibres PRFV/PRFC,											

^{• =} parfaitement adapté

o = adapté

Fraise 4 arêtes de coupes UCR4

Gro	oupe de mat	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Co	ontourn	age a, =	max; a	_e = 0,4 x	o DC			
					Vitesse de coupe v _c					dent f _z de tran				
					[m/min]	3	4	5	6	8	10	12	16	20
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	180	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
		d'acier	500 jusqu'à 700 N/mm²	•	160	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
			700 jusqu'à 1 000 N/mm²	•	120	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
			1 000 jusqu'à 1 400 N/mm²	•	95	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
М	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	0	70	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	0	60	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
		Réfractaire et ferritique-austéni	tique (Duplex)	0	50	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	160	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB											
N	Métaux non ferreux	Aluminium	Alu jusqu'à 10% Si											
	non terreux		Alu > 10% Si											
		Cuivre, laiton, bronze et laiton r	ouge											
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co											
	liages et alliages de	Titane pur		0	40	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
	titane	Alliages de titane		0	30	0,020	0,026	0,033	0,036	0,048	0,060	0,072	0,096	0,120
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC											
	titane		jusqu'à 58 HRC											
			> 58 HRC											
0	Autres	Matières thermoplastiques												
		Plastiques thermodurcissables												
		Matières plastiques renforcées graphite	de fibres PRFV/PRFC,											

^{• =} parfaitement adapté

o = adapté

Fraise 4 arêtes de coupes UCR4

Version angulaire chanfrein avec denture de dégrossissage - métrique

Fraise 4 dents, brise copeaux avec hélices différenciéeset division irregulière, pour opérations d'ébauche à débit des copeaux élevé. Convient à un usage universel dans un grand nombre de matériaux.

DIN

Caractéristiques :

- Version avec dégagement arrière.
- Contrôle optimal des copeaux grâce à la denture d'ébauche.
- Division inégale et angle d'hélice inégal pour un fonctionnement sans vibrations.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	CHW [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
Version	courte H	В		δ		□нв					
6	6	5,4	10	54	18	0,15	4	1	23000356	SCM-UCR4-M060C-S54HB AP40	36,61
8	8	7,4	12	58	22	0,2	4	1	23000357	SCM-UCR4-M080C-S58HB AP40	46,53
10	10	9,4	15	66	26	0,3	4	1	23000358	SCM-UCR4-M100C-S66HB AP40	63,42
12	12	11,2	18	73	28	0,4	4	1	23000359	SCM-UCR4-M120C-S73HB AP40	92,92
Longue	ur HB			δ		нв					
6	6	5,4	15	57	21	0,15	4	1	23000350	SCM-UCR4-M060C-M57HB AP40	40,67
8	8	7,4	20	63	27	0,2	4	1	23000351	SCM-UCR4-M080C-M63HB AP40	51,68
10	10	9,4	25	72	32	0,3	4	1	23000352	SCM-UCR4-M100C-M72HB AP40	70,47
12	12	11,2	30	83	38	0,4	4	1	23000353	SCM-UCR4-M120C-M83HB AP40	103,24
16	16	15,2	32	92	42	0,5	4	1	23000354	SCM-UCR4-M160C-M92HB AP40	175,21
20	20	19,2	40	104	54	0,6	4	1	23000355	SCM-UCR4-M200C-M104HB AP40	284,71

22 SCT Prix par pièce hors TVA.

Fraise 5 arêtes de coupes UC5

Vitesses de coupe recommandées [m/min]

Gr	oupe de matéria	nux	Cahier des charges/ exemple de matériau	Aptitude	Rain	urage	dans	le plei	n a _p =	1 x DC	; a _e = 1	x DC			
					Vitesse de coupe v _c						t f¸ [m tranch				
					[m/min]	3	4	5	6	8	10	12	16	20	25
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	140	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
		d'acier	500 jusqu'à 700 N/mm²	•	120	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
			700 jusqu'à 1 000 N/mm²	•	90	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
			1 000 jusqu'à 1 400 N/mm²	•	70	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
M	Acier inoxy-	Ferritique et martensitique	p.ex. 1.4105, 1.4122	0	70	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
	dable	Austénitique	p.ex. 1.4301, 1.4571	0	60	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
		Réfractaire et ferritique-austé	nitique (Duplex)	0	50	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	120	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	80	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
N	Métaux non	Aluminium	Alu jusqu'à 10% Si												
	ferreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laiton	rouge												
S	Superalliages	Superalliages réfractaires	À base Fe, Ni et Co												
	et alliages de titane	Titane pur		0	40	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
	diane	Alliages de titane		0	30	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissables	5												
		Matières plastiques renforcée	s de fibres PRFV/PRFC, graphite												

• = parfaitement adapté

 \circ = adapté

Fraise 5 arêtes de coupes UC5

oupe de matéria	aux	Cahier des charges/ exemple de matériau	Aptitude		Conto	ournag	je a, =	2 x D(C; a _e =	0,5 x [
				Vitesse de coupe v.										
				[m/min]	3	4	5	6	8	10	12	16	20	25
Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	180	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
	d'acier	500 jusqu'à 700 N/mm²	•	160	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
		700 jusqu'à 1 000 N/mm²	•	120	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
		1 000 jusqu'à 1 400 N/mm²	•	95	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
Acier inoxy-	Ferritique et martensitique	p.ex. 1.4105, 1.4122	0	80	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
dable	Austénitique	p.ex. 1.4301, 1.4571	0	70	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
	Réfractaire et ferritique-austé	nitique (Duplex)	0	60	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	160	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
	Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	120	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
Métaux non	Aluminium	Alu jusqu'à 10% Si												
ferreux		Alu > 10% Si												
	Cuivre, laiton, bronze et laitor	rouge												
Superalliages	Superalliages réfractaires	À base Fe, Ni et Co												
	Titane pur	·	0	45	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
	Alliages de titane		0	35	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
titane		jusqu'à 58 HRC												
		> 58 HRC												
Autres	Matières thermoplastiques													
	Plastiques thermodurcissable	S												
	Matières plastiques renforcée	s de fibres PRFV/PRFC, graphite												
	Acier Acier inoxy-dable Fonte Métaux non ferreux Superalliages et alliages de titane Alliages de titane	Acier inoxydable Austénitique Réfractaire et ferritique-austé Fonte Fonte inoxydable Fonte	Acier Tous les types d'acier et d'acier et d'acier Tous les types d'acier et d'acier et d'acier Tous les types d'acier et d'acier et d'acier Tous les types d'acier et jusqu'à 500 N/mm² Tous jusqu'à 1000 N/mm² Tous les types d'acier et jusqu'à 1000 N/mm² Tous jusqu'à 1 400 N/mm² Perritique et martensitique p.ex. 1.4105, 1.4122 Austénitique p.ex. 1.4301, 1.4571 Réfractaire et ferritique-austénitique (Duplex) Fonte Fonte à graphite lamellaire (GJL, GG, fonte grise) Fonte à graphite sphéroïdale et malléable (GJS, GGG) Métaux non ferreux Aluminium Alu jusqu'à 10% Si Cuivre, laiton, bronze et laiton rouge Superalliages et alliages de titane Aciers traités et trempés jusqu'à 50 HRC jusqu'à 58 HRC > 58 HRC	Acier d'acier jusqu'à 500 N/mm² • 500 jusqu'à 700 N/mm² • 1000 jusqu'à 1 000 N/mm² • 1000 jusqu'à 1 400 N/mm² • 1000 jusqu	Acier Tous les types d'acier et d'acier Tous les types d'acier et jusqu'à 500 N/mm² Tous les types d'acier et jusqu'à 700 N/mm² Tous les types d'acier et jusqu'à 1000 N/mm² Tous jusqu'à 1400 N/mm² Tous les types d'acier et jusqu'à 1400 N/mm² Tous les types d'acier et jusqu'à 1400 N/mm² Tous jusqu'à 1400 N/mm² Tous les types d'acier et jusqu'à 1000 N/mm² Tous les te ferritique let mantensitique jusqu'à 180 HB Tous les te ferritique let mantensitique jusqu'à 180 HB Tous les vieu jusqu'à 180 HB Tous le	Nitesse de coupe v	Acier Tous les types d'acier et d'acier Jusqu'à 500 N/mm² 180 0,016 0,022 1000 jusqu'à 1 000 N/mm² 0 0,016 0,022 1000 jusqu'à 1 400 N/mm² 0 0,016 0,022 1000 jusqu'à 1 80 HB 0 0,016 0,022 1000 jusqu'à 180 HB 0 0,016 0,022 1000 jusqu'à 180 HB 0 0,016 0,022 1000 jusqu'à 1 80 HB 0 0,016 0,022 1000 jusqu'à 1 00% Si 0 0,016 0,022 1000 jusqu'à 1 00% Si 0,016 0,022 0	Acier Tous les types d'acier et d'acier Jusqu'à 500 N/mm² 180 0,016 0,022 0,027	Acier Tous les types d'acier et d'acier Jusqu'à 500 N/mm² 180 0,016 0,022 0,027 0,032	Acier Tous les types d'acier et d'acier et d'acier jusqu'à 500 N/mm² 180 0,016 0,022 0,027 0,032 0,043	Acier Tous les types d'acier et d'acier et d'acier jusqu'à 500 N/mm² 180 0,016 0,022 0,027 0,032 0,043 0,054	Acier Tous les types d'acier et d'acier Jusqu'à 500 N/mm² 180 0,016 0,022 0,027 0,032 0,043 0,054 0,065	Vitesse de coupe v.	Vitesse de coupe v

^{• =} parfaitement adapté

 $[\]circ$ = adapté

Fraise 5 arêtes de coupes UC5

Version angulaire rayon - métrique

Fraise 5 dents avec hélices différenciées pour opérations d'ébauche et finition à débit des copeaux élevé, ramping et trochoïdale. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

- Division inégale pour un travail sans vibrations.
- Longue durée de vie grâce au revêtement moderne de l'outil.
- Version avec dégagement arrière.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
Longue	ur HB			Σ		нв					
6	6	5,7	13	57	20	0,5	5	1	23000845	SCM-UC5-M060R05-M57HB AP40	40,67
8	8	7,7	19	63	25	0,5	5	1	23000846	SCM-UC5-M080R05-M63HB AP40	51,68
10	10	9,7	22	72	30	0,5	5	1	23000847	SCM-UC5-M100R05-M72HB AP40	70,47
12	12	11,6	26	83	36	0,5	5	1	23000848	SCM-UC5-M120R05-M83HB AP40	103,24
16	16	15,6	32	92	42	1	5	1	23000849	SCM-UC5-M160R10-M92HB AP40	175,21
20	20	19,6	38	104	52	1	5	1	23000850	SCM-UC5-M200R10-M104HB AP40	284,71
25	25	24,5	45	124	65	1	5	1	23000851	SCM-UC5-M250R10-M124HB AP40	421,59

Offre de lancement

1 acheté = 1 offert

Valable sur l'ensemble du catalogue Du 02/09 au 30/11/2025

Prix par pièce hors TVA.

Fraise 5 arêtes de coupes UCD5

Vitesses de coupe recommandées [m/min] – Version angulaire rayon avec diviseurs de copeaux, 2xD

Gro	oupe de matéria	aux	Cahier des charges/ exemple de matériau	Aptitude	Rair	nurage	dans	le plei	n a _p =	1 x DC	; a _e = 1	I x DC			
					Vitesse de coupe v							m/der ant DC			
					[m/min]	3	4	5	6	8	10	12	16	20	25
Р	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	140	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
		d'acier	500 jusqu'à 700 N/mm²	•	120	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
			700 jusqu'à 1 000 N/mm²	•	90	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
			1 000 jusqu'à 1 400 N/mm²	•	70	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
M	Acier inoxy-	Ferritique et martensitique	p.ex. 1.4105, 1.4122	0	70	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
	dable	Austénitique	p.ex. 1.4301, 1.4571	0	60	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
		Réfractaire et ferritique-austé	nitique (Duplex)	0	50	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	120	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	80	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
N	Métaux non	Aluminium	Alu jusqu'à 10% Si												
	ferreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laitor	rouge												
S	Superalliages	Superalliages réfractaires	À base Fe, Ni et Co												
	et alliages de titane	Titane pur		0	40	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
		Alliages de titane		0	30	0,014	0,018	0,023	0,027	0,036	0,045	0,054	0,072	0,090	0,113
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissable	S												
		Matières plastiques renforcée	s de fibres PRFV/PRFC, graphite												

^{• =} parfaitement adapté

^{○ =} adapté

Fraise 5 arêtes de coupes UCD5

Vitesses de coupe recommandées [m/min] – Version angulaire rayon avec diviseurs de copeaux, 2xD

Gro	oupe de matéria	aux	Cahier des charges/ exemple de matériau	Aptitude		Conto	ournac	je a₀ =	2 x D(C; a _e =	0,5 x [
					Vitesse de coupe v			A۱	ance	de der	ıt f¸ [m	m/der ant DC			
					[m/min]	3	4	5	6	8	10	12	16	20	25
Р	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	180	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
		d'acier	500 jusqu'à 700 N/mm²	•	160	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
			700 jusqu'à 1 000 N/mm²	•	120	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
			1 000 jusqu'à 1 400 N/mm²	•	95	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
М	Acier inoxy-	Ferritique et martensitique	p.ex. 1.4105, 1.4122	0	80	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
	dable	Austénitique	p.ex. 1.4301, 1.4571	0	70	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
		Réfractaire et ferritique-austé	nitique (Duplex)	0	60	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	160	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	120	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
N	Métaux non	Aluminium	Alu jusqu'à 10% Si												
	ferreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laitor	rouge												
S	Superalliages	Superalliages réfractaires	À base Fe, Ni et Co												
	et alliages de titane	Titane pur	,	0	45	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
		Alliages de titane		0	35	0,016	0,022	0,027	0,032	0,043	0,054	0,065	0,086	0,108	0,135
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissable	S												
		Matières plastiques renforcée	s de fibres PRFV/PRFC, graphite												

^{• =} parfaitement adapté

^{○ =} adapté

Fraise 5 arêtes de coupes UCD5

Vitesses de coupe recommandées [m/min] – Version angulaire rayon avec diviseurs de copeaux, 3xD

Gro	oupe de mat	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Fra	isage d	ynamio	que a _p =	= 3 x D(C; a _e = 0	0,08	®		
					Vitesse de coupe v _c		,		Avance diamè	de der	it f, [mi	m/dent	:]		
		1			[m/min]	3	4	5	6	8	10	12	16	20	25
Р	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	250	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
		d'acier	500 jusqu'à 700 N/mm²	•	220	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
			700 jusqu'à 1 000 N/mm²	•	160	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
			1 000 jusqu'à 1 400 N/mm²	•	130	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	0	90	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	0	80	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
		Réfractaire et ferritique-austér	nitique (Duplex)	0	70	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	180	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	160	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
N	Métaux	Aluminium	Alu jusqu'à 10% Si												
	non ferreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laiton	rouge												
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co												
	liages et alliages de	Titane pur		0	70	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
	titane	Alliages de titane		0	50	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissables													
		Matières plastiques renforcées graphite	s de fibres PRFV/PRFC,												

^{• =} parfaitement adapté

^{∘ =} adapté

Fraise 5 arêtes de coupes UCD5

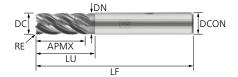
Vitesses de coupe recommandées [m/min] – Version angulaire rayon avec diviseurs de copeaux, 4xD

Gro	oupe de mat	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Fra	isage d	ynamio	ղue a _p =	= 4 x D(C; a _e = 0	0,06	®		
					Vitesse de coupe v _c				Avance : diamè	de der	nt f _z [mi	m/dent	:]		
					[m/min]	3	4	5	6	8	10	12	16	20	25
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	250	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
		d'acier	500 jusqu'à 700 N/mm²	•	220	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
			700 jusqu'à 1 000 N/mm²	•	160	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
			1 000 jusqu'à 1 400 N/mm²	•	130	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
М	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	0	90	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	0	80	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
		Réfractaire et ferritique-austé	nitique (Duplex)	0	70	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	180	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	160	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
N	Métaux	Aluminium	Alu jusqu'à 10% Si												
	non ferreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laiton	rouge												
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co												
	liages et alliages de	Titane pur		0	70	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
	titane	Alliages de titane		0	50	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissables	S												
		Matières plastiques renforcée graphite	s de fibres PRFV/PRFC,												

^{• =} parfaitement adapté ○ = adapté

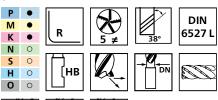
Fraise 5 arêtes de coupes UCD5

Vitesses de coupe recommandées [m/min] – Version angulaire rayon avec diviseurs de copeaux, 5xD

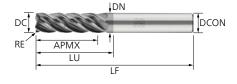

Gr	oupe de mat	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Fra	isage d	ynamio	que a _p =	= 5 x D(:; a _e = 0	0,06	®		
					Vitesse de coupe v _c				Avance diamè	de der	ıt f _z [mı	m/dent	:]		
					[m/min]	3	4	5	6	8	10	12	16	20	25
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²	•	250	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
		d'acier	500 jusqu'à 700 N/mm²	•	220	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
			700 jusqu'à 1 000 N/mm²	•	160	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
			1 000 jusqu'à 1 400 N/mm²	•	130	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	0	90	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	0	80	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
		Réfractaire et ferritique-austé	nitique (Duplex)	0	70	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	180	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	160	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
N	Métaux	Aluminium	Alu jusqu'à 10% Si												
	non ferreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laiton	rouge												
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co												
	liages et alliages de	Titane pur		0	70	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
	titane	Alliages de titane		0	50	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissables	5												
		Matières plastiques renforcée graphite	s de fibres PRFV/PRFC,												

^{• =} parfaitement adapté

^{○ =} adapté


Fraise 5 arêtes de coupes UCD5

Version angulaire rayon avec diviseurs de copeaux, 2xD - métrique


Fraise 5 dents avec brise copeaux et hélices différenciées pour opérations d'ébauche et finition à débit des copeaux élevé, ramping et trochoïdale. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

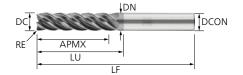
- Contrôle optimal des copeaux grâce au diviseur de copeaux.
- Division inégale pour un travail sans vibrations.
- Version avec dégagement arrière.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
Longue	ur HB			δ		НВ					
6	6	5,7	13	57	20	0,5	5	1	23000852	SCM-UCD5-M060R05-M57HB AP40	41,88
8	8	7,7	19	63	25	0,5	5	1	23000853	SCM-UCD5-M080R05-M63HB AP40	53,24
10	10	9,7	22	72	30	0,5	5	1	23000854	SCM-UCD5-M100R05-M72HB AP40	72,58
12	12	11,6	26	83	36	0,5	5	1	23000855	SCM-UCD5-M120R05-M83HB AP40	106,34
16	16	15,6	32	92	42	1	5	1	23000856	SCM-UCD5-M160R10-M92HB AP40	180,46
20	20	19,6	38	104	52	1	5	1	23000857	SCM-UCD5-M200R10-M104HB AP40	293,25
25	25	24,5	45	124	65	1	5	1	23000858	SCM-UCD5-M250R10-M124HB AP40	434,24

Version angulaire rayon avec diviseurs de copeaux, 3xD - métrique

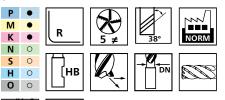
Fraise 5 dents avec brise copeaux et hélices différenciées pour opérations d'ébauche et finition à débit des copeaux élevé, ramping et trochoïdale. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:


- Contrôle optimal des copeaux grâce au diviseur de copeaux.
- Division inégale pour un travail sans vibrations.
- Version avec dégagement arrière.

DC	DCON	DN	APMX	LF	LU	RE	ZEFP		Réf.	Désignation	Prix/
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			article		pièce
											EUR
3xD HB				Σ		нв					
6	6	5,7	19	66	23	0,5	5	1	23000859	SCM-UCD5-M060R05-L66HB AP40	48,18
8	8	7,7	25	70	29	0,5	5	1	23000860	SCM-UCD5-M080R05-L70HB AP40	61,22
10	10	9,7	31	78	35	0,5	5	1	23000861	SCM-UCD5-M100R05-L78HB AP40	83,48
12	12	11,6	38	92	42	0,5	5	1	23000862	SCM-UCD5-M120R05-L92HB AP40	122,29
16	16	15,6	50	110	56	1	5	1	23000863	SCM-UCD5-M160R10-L110HB AP40	207,54
20	20	19,6	62	125	70	1	5	1	23000864	SCM-UCD5-M200R10-L125HB AP40	337,24
25	25	24,5	78	150	88	1	5	1	23000865	SCM-UCD5-M250R10-L150HB AP40	499,36

Prix par pièce hors TVA.


Fraise 5 arêtes de coupes UCD5

Version angulaire rayon avec diviseurs de copeaux, 4xD - métrique


Fraise 5 dents avec brise copeaux et hélices différenciées pour opérations d'ébauche et finition à débit des copeaux élevé, ramping et trochoïdale. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

- Contrôle optimal des copeaux grâce au diviseur de copeaux.
- Division inégale pour un travail sans vibrations.
- Version avec dégagement arrière.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
4xD HB				δ		нв					
6	6	5,7	24	66	29	0,5	5	1	23000866	SCM-UCD5-M060R05-XL66HB AP40	52,87
8	8	7,7	32	74	37	0,5	5	1	23000867	SCM-UCD5-M080R05-XL74HB AP40	69,20
10	10	9,7	40	88	45	0,5	5	1	23000868	SCM-UCD5-M100R05-XL88HB AP40	94,36
12	12	11,6	48	105	54	0,5	5	1	23000869	SCM-UCD5-M120R05-XL105HB AP40	138,23
16	16	15,6	64	124	72	1	5	1	23000870	SCM-UCD5-M160R10-XL124HB AP40	234,61
20	20	19,6	80	148	90	1	5	1	23000871	SCM-UCD5-M200R10-XL148HB AP40	381,23
25	25	24.5	100	187	115	1	5	1	23000872	SCM-LICDS-M250R10-XL182HR AP40	564 50

Version angulaire rayon avec diviseurs de copeaux, 5xD - métrique

Fraise 5 dents avec brise copeaux et hélices différenciées pour opérations d'ébauche et finition à débit des copeaux élevé, ramping et trochoïdale. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

- Contrôle optimal des copeaux grâce au diviseur de copeaux.
- Division inégale pour un travail sans vibrations.
- Version avec dégagement arrière.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce
	Į			[]	[]	[]					EUR
5xD HB				δ		НВ					
6	6	5,7	30	74	35	0,5	5	1	23000873	SCM-UCD5-M060R05-XXL74HB AP40	58,97
8	8	7,7	40	84	45	0,5	5	1	23000874	SCM-UCD5-M080R05-XXL84HB AP40	77,20
10	10	9,7	50	100	55	0,5	5	1	23000875	SCM-UCD5-M100R05-XXL100HB AP40	105,24
12	12	11,6	60	115	66	0,5	5	1	23000876	SCM-UCD5-M120R05-XXL115HB AP40	154,18
16	16	15,6	80	142	88	1	5	1	23000877	SCM-UCD5-M160R10-XXL142HB AP40	261,68
20	20	19,6	100	165	110	1	5	1	23000878	SCM-UCD5-M200R10-XXL165HB AP40	425,21
25	25	24,5	125	200	138	1	5	1	23000879	SCM-UCD5-M250R10-XXL200HB AP40	629,64

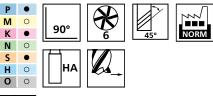
32 SCT Prix par pièce hors TVA.

Fraise finition 6 ou 8 arêtes de coupes UC6/8

Gro	Groupe de matériaux		Cahier des charges/ exemple de matériau	Aptitude	Cor	ntournage	e a _p = 1,5 x	DC; a _e = 0	,05 x DC		
					Vitesse de coupe v _c			ice de den mètre de t			
					[m/min]	6	8	10	12	16	20
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²	•	200	0,035	0,04	0,055	0,065	0,08	0,1
			500 jusqu'à 700 N/mm²	•	160	0,035	0,04	0,055	0,065	0,08	0,1
			700 jusqu'à 1 000 N/mm²	•	120	0,035	0,04	0,055	0,065	0,08	0,1
			1 000 jusqu'à 1 400 N/mm²	•	100	0,025	0,03	0,04	0,05	0,065	0,08
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	100	0,025	0,025	0,04	0,05	0,065	0,08
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	•	80	0,025	0,03	0,04	0,05	0,065	0,08
		Réfractaire et ferritique-austénit	0	65	0,02	0,025	0,03	0,04	0,05	0,065	
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	170	0,03	0,04	0,055	0,065	0,08	0,1
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	140	0,03	0,04	0,055	0,065	0,08	0,1
N	Métaux non	Aluminium	Alu jusqu'à 10% Si								
	ferreux		Alu > 10% Si	0	300	0,03	0,04	0,055	0,065	0,08	0,1
		Cuivre, laiton, bronze et laiton ro	uge	0	340	0,03	0,04	0,055	0,065	0,08	0,1
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co	•	40	0,02	0,025	0,03	0,035	0,045	0,065
	liages et alliages de	Titane pur		•	80	0,02	0,025	0,03	0,035	0,045	0,065
	titane	Alliages de titane		•	70	0,02	0,025	0,03	0,035	0,045	0,065
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC	0	60	0,025	0,03	0,03	0,035	0,045	0,065
	titane		jusqu'à 58 HRC								
			> 58 HRC								
0	Autres	Matières thermoplastiques		0	300	0,03	0,04	0,055	0,065	0,08	0,1
		Plastiques thermodurcissables									
		Matières plastiques renforcées d	e fibres PRFV/PRFC, graphite								

^{• =} parfaitement adapté

^{∘ =} adapté


Fraise finition 6 ou 8 arêtes de coupes UC6/8

Version angle vif - métrique

Fraise de finition multi-dents. La faible flexion de l'outil permet un travail très précis. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

- Grande qualité de surface.
- Productivité élevée avec performance d'enlèvement de matière optimal.
- Longue durée de vie grâce au revêtement moderne de l'outil.

DC [mm]	DCON [mm]	APMX [mm]	LF [mm]	ZEFP		Réf. article	Désignation	Prix/pièce EUR
Longueur H	A			НА				
6	6	13	57	6	1	23000174	SCM-UC6-M060S-M57HA AL40	34,28
8	8	19	63	6	1	23000175	SCM-UC6-M080S-M63HA AL40	43,53
10	10	22	72	6	1	23000176	SCM-UC6-M100S-M72HA AL40	59,44
12	12	26	83	6	1	23000177	SCM-UC6-M120S-M83HA AL40	87,20
16	16	32	92	6	1	23000178	SCM-UC6-M160S-S92HA AL40	147,86
20	20	38	104	8	1	23000179	SCM-UC8-M200S-S104HA AL40	240,36

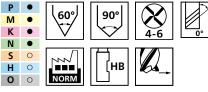
34 SCT Prix par pièce hors TVA.

Fraise d'ébavurage Universal UD

Gro	oupe de maté	riaux	Cahier des charges/ exemple de matériau	Aptitude	Chanf/ébavurage $a_p = 0.2 \times DC$; $a_e = 0.1 \times DC$				
					Vitesse de coupe v _c		Avance de den	t f¸ [mm/dent] ranchant DC [r	
					[m/min]	6	8	10	12
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²	•	180	0,045	0,065	0,085	0,14
			500 jusqu'à 700 N/mm²	•	160	0,045	0,065	0,085	0,14
			700 jusqu'à 1 000 N/mm²	•	140	0,025	0,04	0,045	0,075
			1 000 jusqu'à 1 400 N/mm²	•	120	0,025	0,04	0,045	0,075
М	Acier inoxy-	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	100	0,025	0,04	0,045	0,075
	dable	Austénitique	p.ex. 1.4301, 1.4571	•	75	0,025	0,04	0,045	0,075
		Réfractaire et ferritique-austénitique	actaire et ferritique-austénitique (Duplex)			0,025	0,04	0,045	0,075
K	C Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	180	0,045	0,065	0,085	0,14
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	140	0,025	0,04	0,045	0,075
N	Métaux non	Aluminium	Alu jusqu'à 10% Si	•	300	0,045	0,065	0,085	0,14
	ferreux		Alu > 10% Si	•	260	0,045	0,065	0,085	0,14
		Cuivre, laiton, bronze et laiton roug	ge	•	300	0,045	0,065	0,085	0,14
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co	0	50	0,025	0,04	0,045	0,075
	liages et alliages de	Titane pur		0	140	0,025	0,04	0,045	0,075
	titane	Alliages de titane		0	70	0,025	0,04	0,045	0,075
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC	0	70	0,025	0,04	0,045	0,075
	titane		jusqu'à 58 HRC						
			> 58 HRC						
0	Autres	Matières thermoplastiques		0	300	0,045	0,065	0,085	0,14
		Plastiques thermodurcissables							
		Matières plastiques renforcées de	fibres PRFV/PRFC, graphite						

^{• =} parfaitement adapté

^{○ =} adapté


Fraise d'ébavurage Universal UD

Forme conique - métrique

Fraise pour l'ébavurage et le chanfreinage. Convient à un usage universel dans un grand nombre de matériaux.

Caractéristiques:

- Productivité élevée avec performance d'enlèvement de matière optimal.
- Longue durée de vie grâce au revêtement moderne de l'outil.

DC [mm]	DCON [mm]	APMX [mm]	LF [mm]	KAPR	ZEFP		Réf. article	Désignation	Prix/pièce EUR						
60° HB	60° HB — HB														
6	6	5,2	57	60	4	1	23000116	SCM-UD4-M060A60°-HB AL40	39,44						
8	8	6,9	63	60	5	1	23000117	SCM-UD5-M080A60°-HB AL40	53,06						
10	10	8,7	72	60	6	1	23000118	SCM-UD6-M100A60°-HB AL40	62,57						
12	12	10,4	83	60	6	1	23000119	SCM-UD6-M120A60°-HB AL40	93,86						
90° HB				НВ	1										
6	6	3	57	45	4	1	23000120	SCM-UD4-M060A90°-HB AL40	39,44						
8	8	4	63	45	5	1	23000121	SCM-UD5-M080A90°-HB AL40	53,06						
10	10	5	72	45	6	1	23000122	SCM-UD6-M100A90°-HB AL40	62,57						
12	12	6	83	45	6	1	23000123	SCM-UD6-M120A90°-HB AL40	93,86						

Assortiment SCM-UD-SET-M060/080/100 A90°HB AL40 3TLG

L'assortiment comprend trois fraises en carbure monobloc pour l'ébavurage et le chanfreinage. Les fraises en carbure monobloc sont adaptées à une utilisation universelle dans de nombreux matériaux.

Contenu: L'assortiment comprend une SCM-UD4-M060A90 -HB AL40, une SCM-UD5-

M080A90°-HB AL40 et une SCM-UD6-M100A90°-HB AL40.

Exécution	Contenu [pièce]	Contenu ø d'outil		Réf. article	Désignation	Prix/pièce EUR
90°	3	6, 8, 10	1	23000203	SCM-UD-SET-	155,07
					M060/080/100 A	
					90°HB AL40 3TLG	

36 | SCT Prix par pièce hors TVA.

Fraise hémiphérique UB

Vitesses de coupe recommandées [m/min]

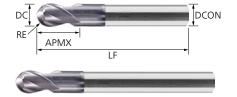
Gr	oupe de ma	tériaux	Cahier des charges/ exemple de matériau	Aptitude			Fraisage	de prof	ilés util	isation	pointe				
					a _p	a _e	Vitesse de coupe v		ave			ıt f _z [mn trancha	_		
							[m/min]	3	4	5	6	8	10	12	16
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²	•	jusqu'à 0,1 x D	jusqu'à 0,3 x D	900	0,025	0,04	0,055	0,065	0,075	0,08	0,09	0,12
			500 jusqu'à 700 N/mm²	•	jusqu'à 0,1 x D	jusqu'à 0,3 x D	700	0,025	0,04	0,055	0,065	0,075	0,08	0,09	0,12
			700 jusqu'à 1 000 N/mm²	•	jusqu'à 0,1 x D	jusqu'à 0,3 x D	550	0,025	0,04	0,055	0,065	0,075	0,08	0,09	0,12
			1 000 jusqu'à 1 400 N/mm²	•	jusqu'à 0,06 x D	jusqu'à 0,3 x D	400	0,015	0,025	0,03	0,04	0,045	0,055	0,065	0,08
M	Acier inoxydable	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	jusqu'à 0,06 x D	jusqu'à 0,3 x D	180	0,015	0,025	0,03	0,04	0,045	0,055	0,065	0,08
		Austénitique	p.ex. 1.4301, 1.4571	•	jusqu'à 0,06 x D	jusqu'à 0,3 x D	130	0,015	0,025	0,03	0,04	0,045	0,055	0,065	0,08
		Réfractaire et ferritique-	-austénitique (Duplex)	0	jusqu'à 0,06 x D	jusqu'à 0,3 x D	100	0,01	0,018	0,02	0,03	0,04	0,05	0,06	0,07
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	jusqu'à 0,1 x D	jusqu'à 0,3 x D	800	0,025	0,04	0,055	0,065	0,075	0,08	0,09	0,12
		Fonte à graphite sphé- roïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	jusqu'à 0,1 x D	jusqu'à 0,3 x D	750	0,025	0,04	0,055	0,065	0,075	0,08	0,09	0,12
N	Métaux non ferreux	Aluminium	Alu jusqu'à 10% Si	0	jusqu'à 0,1 x D	jusqu'à 0,3 x D	1.200	0,025	0,04	0,055	0,065	0,075	0,08	0,09	0,12
			Alu > 10% Si	•	jusqu'à 0,1 x D	jusqu'à 0,3 x D	850	0,025	0,04	0,055	0,065	0,075	0,08	0,09	0,12
		Cuivre, laiton, bronze et	laiton rouge	•	jusqu'à 0,1 x D	jusqu'à 0,3 x D	1.100	0,025	0,04	0,055	0,065	0,075	0,08	0,09	0,12
S	Superal- liages et	Superalliages réfractaires	À base Fe, Ni et Co												
	alliages de	Titane pur													
	titane	Alliages de titane													
Н	Alliages de titane	Aciers traités et trempés	jusqu'à 50 HRC	•	jusqu'à 0,06 x D	jusqu'à 0,3 x D	200	0,01	0,018	0,02	0,03	0,04	0,05	0,06	0,07
			jusqu'à 58 HRC	0	jusqu'à 0,06 x D	jusqu'à 0,3 x D	150	0,01	0,018	0,02	0,03	0,04	0,05	0,06	0,07
			> 58 HRC												
0	Autres	Matières thermoplastiq	ues	0	jusqu'à 0,1 x D	jusqu'à 0,3 x D	1.200	0,025	0,04	0,055	0,065	0,075	0,08	0,09	0,12
		Plastiques thermodurcis	astiques thermodurcissables												
		Matières plastiques ren PRFC, graphite	forcées de fibres PRFV/												

• = parfaitement adapté

 \circ = adapté

Fraise hémiphérique UB

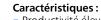
Vitesses de coupe recommandées [m/min]


Gr	oupe de mat	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Fra	isage de pro	filés ut	tilisatio	on épai	ılemen	t			
					a _p	a _e	Vitesse de coupe v		P	vance diamè	de der	ıt f _z [mı			
							[m/min]	3	4	5	6	8	10	12	16
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	570	0,04	0,06	0,08	0,1	0,11	0,12	0,14	0,18
			500 jusqu'à 700 N/mm²	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	450	0,04	0,06	0,08	0,1	0,11	0,12	0,14	0,18
			700 jusqu'à 1 000 N/mm²	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	350	0,04	0,06	0,08	0,1	0,11	0,12	0,14	0,18
			1 000 jusqu'à 1 400 N/mm²	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	250	0,02	0,04	0,05	0,06	0,07	0,08	0,1	0,12
M	Acier inoxydable	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	130	0,02	0,04	0,05	0,06	0,07	0,08	0,1	0,12
		Austénitique	p.ex. 1.4301, 1.4571	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	80	0,02	0,04	0,05	0,06	0,07	0,08	0,1	0,12
		Réfractaire et ferritique-a	usténitique (Duplex)	0	jusqu'à 0,1 x D	jusqu'à 0,45 x D	60	0,015	0,03	0,04	0,05	0,06	0,07	0,08	0,1
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	550	0,04	0,06	0,08	0,1	0,11	0,12	0,14	0,18
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	500	0,04	0,06	0,08	0,1	0,11	0,12	0,14	0,18
N	Métaux non ferreux	Aluminium	Alu jusqu'à 10% Si	0	jusqu'à 0,1 x D	jusqu'à 0,45 x D	750	0,04	0,06	0,08	0,1	0,11	0,12	0,14	0,18
			Alu > 10% Si	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	600	0,04	0,06	0,08	0,1	0,11	0,12	0,14	0,18
		Cuivre, laiton, bronze et la	niton rouge	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	700	0,04	0,06	0,08	0,1	0,11	0,12	0,14	0,18
S	Superal- liages et	Superalliages réfractaires	À base Fe, Ni et Co												
	alliages de	Titane pur													
	titane	Alliages de titane													
Н	Alliages de titane	Aciers traités et trempés	jusqu'à 50 HRC	•	jusqu'à 0,1 x D	jusqu'à 0,45 x D	150	0,02	0,04	0,05	0,06	0,07	0,08	0,1	0,12
			jusqu'à 58 HRC	0	jusqu'à 0,1 x D	jusqu'à 0,45 x D	110	0,02	0,04	0,05	0,06	0,07	0,08	0,1	0,12
			> 58 HRC												
0	Autres	Matières thermoplastique	25	0	jusqu'à 0,1 x D	jusqu'à 0,45 x D	750	0,04	0,06	0,08	0,1	0,11	0,12	0,14	0,18
		Plastiques thermodurcissa	ables												
		Matières plastiques renfo graphite	rcées de fibres PRFV/PRFC,												

^{• =} parfaitement adapté

 $[\]circ$ = adapté

Fraise hémiphérique UB



Hémiphérique - métrique

Fraise pour le fraisage de profilés de formes libres. Convient à un usage universel dans un grand nombre de matériaux.

- Productivité élevée avec performance d'enlèvement de matière optimal.
- Longue durée de vie grâce au revêtement moderne de l'outil.

D _c [mm]	DCON [mm]	APMX [mm]	LF [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/pièce EUR
Longueur I	на		Σ	н	Α				
3	6	5	54	1,5	2	1	23000100	SCM-UB2-M030R-S54HA6 AL40	42,17
4	6	8	54	2	2	1	23000101	SCM-UB2-M040R-S54HA6 AL40	42,17
5	6	9	54	2,5	2	1	23000102	SCM-UB2-M050R-S54HA6 AL40	42,17
6	6	10	54	3	2	1	23000103	SCM-UB2-M060R-S54HA AL40	42,17
8	8	12	58	4	2	1	23000104	SCM-UB2-M080R-S58HA AL40	55,77
10	10	14	66	5	2	1	23000105	SCM-UB2-M100R-S66HA AL40	80,26
12	12	16	73	6	2	1	23000106	SCM-UB2-M120R-S73HA AL40	100,66
16	16	22	82	8	2	1	23000107	SCM-UB2-M160R-S82HA AL40	179,56
HA extra-lo	ong		Σ	<u></u>	Α				
3	6	5	80	1,5	2	1	23000108	SCM-UB2-M030R-S80HA6 AL40	50,60
4	6	8	80	2	2	1	23000109	SCM-UB2-M040R-S80HA6 AL40	50,60
5	6	9	100	2,5	2	1	23000110	SCM-UB2-M050R-S100HA6 AL40	50,60
6				3	2	1	23000111	SCM-UB2-M060R-S100HA AL40	50,60
8	8	12	100	4	2	1	23000112	SCM-UB2-M080R-S100HA AL40	66,92
10	14	100	5	2	1	23000113	SCM-UB2-M100R-S100HA AL40	112,35	
12 12 16			100	6	2	1	23000114	SCM-UB2-M120R-S100HA AL40	140,92
16	16	22	150	8	2	1	23000115	SCM-UB2-M160R-S150HA AL40	251,38

Prix par pièce hors TVA.

Aperçu de la compatibilité avec les matériaux

Performance Inox

Group	oe de matériaux		Fraise HPC 4 arêtes de coupes HC4M	Fraise HPC 5 arêtes de coupes HCD5M
P	Acier	Tous les types d'acier et d'acier jusqu'à 1 400 N/mm²		
M	Acier inoxydable	Ferritique et martensitique	•	•
		Austénitique	•	•
		Réfractaire et ferritique-austénitique (Duplex)	•	•
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)		
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)		
N	Métaux non ferreux	Aluminium	0	0
		Cuivre, laiton, bronze, laiton rouge	0	0
S	Superalliages et alliages de titane	Superalliages réfractaires à base Fe, Ni et Co		
		Titane pur	•	•
		Alliages de titane	•	•
Н	Alliages de titane	Aciers traités et trempés jusqu'à 50 HRC		
		Aciers trempés jusqu'à 58 HRC		
		Aciers trempés à partir de 58 HRC		
0	Autres	Matières thermoplastiques		
		Plastiques thermodurcissables		
		Matières plastiques renforcées de fibres PRFV/PRFC, graphite		

• = parfaitement adapté • :

∘ = adapté

Fraise HPC 4 arêtes de coupes HC4M

Vitesses de coupe recommandées [m/min]

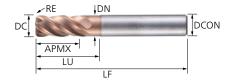
G	oupe de ma	tériaux	Cahier des charges/exemple de matériau	Aptitude			Rainur	age daı			: 1 x DC						
					Vitesse de coupe v						de den						
					[m/min]	1	2	3	4	5	6	8	10	12	16	20	25
P	Acier	Tous les types d'acier	jusqu'à 500 N/mm²														
		et d'acier	500 jusqu'à 700 N/mm²														
			700 jusqu'à 1 000 N/mm²														
			1 000 jusqu'à 1 400 N/mm²														
M	Acier inoxydable	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	100	0,005	0,010	0,015	0,020	0,025	0,030	0,040	0,050	0,060	0,080	0,100	0,125
		Austénitique	p.ex. 1.4301, 1.4571	•	90	0,005	0,010	0,015	0,020	0,025	0,030	0,040	0,050	0,060	0,080	0,100	0,125
		Réfractaire et ferritique (Duplex)	e-austénitique	•	70	0,005	0,010	0,015	0,020	0,025	0,030	0,040	0,050	0,060	0,080	0,100	0,125
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB														
		Fonte à graphite sphéroïdale et mal- léable (GJS, GGG)	160 jusqu'à 260 HB														
N	Métaux	Aluminium	Alu jusqu'à 10% Si														
	non ferreux		Alu > 10% Si														
		Cuivre, laiton, bronze e	t laiton rouge														
S	Superal- liages et	Superalliages réfractaires	À base Fe, Ni et Co														
	alliages de titane	Titane pur		•	50	0,005	0,010	0,015	0,020	0,025	0,030	0,040	0,050	0,060	0,080	0,100	0,125
	utane	Alliages de titane		•	40	0,005	0,010	0,015	0,020	0,025	0,030	0,040	0,050	0,060	0,080	0,100	0,125
Н	Alliages de	Aciers traités et	jusqu'à 50 HRC														
	titane	trempés	jusqu'à 58 HRC														
			> 58 HRC														
0	Autres	Matières thermoplastic	ques														
		Plastiques thermodurci	issables														
		Matières plastiques rer PRFV/PRFC, graphite	nforcées de fibres														

^{• =} parfaitement adapté

^{∘ =} adapté

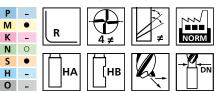
Fraise HPC 4 arêtes de coupes HC4M

Vitesses de coupe recommandées [m/min]


G	oupe de ma	tériaux	Cahier des charges/exemple de matériau	Aptitude			Co	ntourn		= 2 x D							
					Vitesse de coupe v					Avance : diamè							
					[m/min]	1	2	3	4	5	6	8	10	12	16	20	25
P	Acier	Tous les types d'acier	jusqu'à 500 N/mm²														
		et d'acier	500 jusqu'à 700 N/mm²														
			700 jusqu'à 1 000 N/mm²														
			1 000 jusqu'à 1 400 N/mm²														
M	Acier inoxydable	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	110	0,006	0,012	0,018	0,024	0,030	0,036	0,048	0,060	0,072	0,096	0,120	0,150
		Austénitique	p.ex. 1.4301, 1.4571	•	100	0,006	0,012	0,018	0,024	0,030	0,036	0,048	0,060	0,072	0,096	0,120	0,150
		Réfractaire et ferritique (Duplex)	e-austénitique	•	80	0,006	0,012	0,018	0,024	0,030	0,036	0,048	0,060	0,072	0,096	0,120	0,150
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB														
		Fonte à graphite sphéroïdale et mal- léable (GJS, GGG)	160 jusqu'à 260 HB														
N	Métaux	Aluminium	Alu jusqu'à 10% Si														
	non ferreux		Alu > 10% Si														
		Cuivre, laiton, bronze e	t laiton rouge														
S	Superal- liages et	Superalliages réfractaires	À base Fe, Ni et Co														
	alliages de titane	Titane pur		•	50	0,006	0,012	0,018	0,024	0,030	0,036	0,048	0,060	0,072	0,096	0,120	0,150
	utane	Alliages de titane		•	40	0,006	0,012	0,018	0,024	0,030	0,036	0,048	0,060	0,072	0,096	0,120	0,150
Н	Alliages de	Aciers traités et	jusqu'à 50 HRC														
	titane	trempés	jusqu'à 58 HRC														
			> 58 HRC														
0	Autres	Matières thermoplastic	ques														
		Plastiques thermodurci	issables														
		Matières plastiques rer PRFV/PRFC, graphite	nforcées de fibres														

^{• =} parfaitement adapté

^{∘ =} adapté


Fraise HPC 4 arêtes de coupes HC4M

Version angulaire rayon - métrique

Fraise avec dégagement arrière pour utilisation polyvalente, débauche à la finition en passant par le rainurage jusqu'à 1xD. Grâce à leur géométrie et à leur revêtement spécifiques au matériau, les fraises sont optimisées pour l'utilisation dans des matériaux inoxydables.

Caractéristiques :

- Division inégale et angle d'hélice inégal pour un fonctionnement sans vibrations.
- Angle d'hélice optimisé pour une meilleure évacuation des copeaux.
- Contrôle de température optimal lors de l'usinage de matériaux difficiles à usiner.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR		
Longueu	ır HA			۲		НА							
6	6	5,7	13	57	20	0,5	4	1	23000892	SCM-HC4M-M060R05-M57HA TI40	45,34		
					Ì	1	4	1	23000893	SCM-HC4M-M060R10-M57HA TI40	45,34		
8	8	7	19	63	25	0,5	4	1	23000894	SCM-HC4M-M080R05-M63HA TI40	57,57		
					ĺ	1	4	1	23000895	SCM-HC4M-M080R10-M63HA TI40	57,57		
					Ī	2	4	1	23000896	SCM-HC4M-M080R20-M63HA TI40	57,57		
10	10	9,7	22	72	30	0,5	4	1	23000897	SCM-HC4M-M100R05-M72HA TI40	78,61		
					Ì	1	4	1	23000898	SCM-HC4M-M100R10-M72HA TI40	78,61		
					Ì	2	4	1	23000899	SCM-HC4M-M100R20-M72HA TI40	78,61		
12	12	12 11,6 26			36	0,5	4	1	23000900	SCM-HC4M-M120R05-M83HA TI40	115,32		
					Ì	1	4	1	23000901	SCM-HC4M-M120R10-M83HA TI40	115,32		
					Ī	2	4	1	23000902				
					Ì	3	4	1	23000903	SCM-HC4M-M120R30-M83HA TI40	115,32		
16	16	15,6	32	92	42	1	4	1	23000904	SCM-HC4M-M160R10-M92HA TI40	195,55		
					Ì	2	4	1	23000905	SCM-HC4M-M160R20-M92HA TI40	195,5		
					ĺ	3	4	1	23000906	SCM-HC4M-M160R30-M92HA TI40	195,55		
					Ī	4	4	1	23000907	SCM-HC4M-M160R40-M92HA TI40	195,55		
20	20	19,6	38	104	52	1	4	1	23000908	SCM-HC4M-M200R10-M104HA TI40	317,88		
					Ì	2	4	1	23000909	SCM-HC4M-M200R20-M104HA TI40	317,88		
					Ì	3	4	1	23000910	SCM-HC4M-M200R30-M104HA TI40	317,88		
					Ì	4	4	1	23000911	SCM-HC4M-M200R40-M104HA TI40	317,88		
25	25	24,5	45	125	65	2	4	1	23000912	SCM-HC4M-M250R20-M125HA TI40	470,70		
					Ī	3	4	1	23000913	SCM-HC4M-M250R30-M125HA TI40	470,70		
						4	4	1	23000914	SCM-HC4M-M250R40-M125HA TI40	470,70		
Longueu	ır HB			۲		нв							
6	6	5,7	13	57	20	0,5	4	1	23000927	SCM-HC4M-M060R05-M57HB TI40	46,78		
						1	4	1	23000928	SCM-HC4M-M060R10-M57HB TI40	46,78		
8	8	7	19	63	25	0,5	4	1	23000929	SCM-HC4M-M080R05-M63HB TI40	59,44		
					Ī	1	4	1	23000930	SCM-HC4M-M080R10-M63HB TI40	59,44		
					Ì	2	4	1	23000931	SCM-HC4M-M080R20-M63HB TI40	59,44		
10	10	9,7	22	72	30	0,5	4	1	23000932	SCM-HC4M-M100R05-M72HB TI40	81,04		
					Ī	1	4	1	23000933	SCM-HC4M-M100R10-M72HB TI40	81,04		
					Ì	2	4	1	23000934	SCM-HC4M-M100R20-M72HB TI40	81,04		
12	12	11,6	26	83	36	0,5	4	1	23000935	SCM-HC4M-M120R05-M83HB TI40	118,72		
					Ì	1	4	1	23000936	SCM-HC4M-M120R10-M83HB TI40	118,72		
					ľ	2	4	1	23000937	SCM-HC4M-M120R20-M83HB TI40	118,72		
					İ	3	4	4 1 23000938 SCM-HC4M-M120R30-M83HB TI40					
16	16	15,6	32	92	42	1	4	1	23000939	SCM-HC4M-M160R10-M92HB TI40	118,72 201,49		

Suite voir page suivante

Prix par pièce hors TVA. SCT | 43

Fraise HPC 4 arêtes de coupes HC4M

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
16	16	15,6	32	92	42	2	4	1	23000940	SCM-HC4M-M160R20-M92HB TI40	201,49
						3	4	1	23000941	SCM-HC4M-M160R30-M92HB TI40	201,49
						4	4	1	23000942	SCM-HC4M-M160R40-M92HB TI40	201,49
20	20	19,6	38	104	52	1	4	1	23000943	SCM-HC4M-M200R10-M104HB TI40	327,41
						2	4	1	23000944	SCM-HC4M-M200R20-M104HB TI40	327,41
						3	4	1	23000945	SCM-HC4M-M200R30-M104HB TI40	327,41
						4	4	1	23000946	SCM-HC4M-M200R40-M104HB TI40	327,41
25	25	24,5	45	125	65	2	4	1	23000947	SCM-HC4M-M250R20-M125HB TI40	484,83
						3	4	1	23000948	SCM-HC4M-M250R30-M125HB TI40	484,83
						4	4	1	23000949	SCM-HC4M-M250R40-M125HB TI40	484,83

Version angulaire chanfrein - métrique

Fraise avec dégagement arrière pour utilisation polyvalente, débauche à la finition en passant par le rainurage jusqu'à 1xD. Grâce à leur géométrie et à leur revêtement spécifiques au matériau, les fraises sont optimisées pour l'utilisation dans des matériaux inoxydables.

Caractéristiques:

- Division inégale et angle d'hélice inégal pour un fonctionnement sans vibrations.
- Angle d'hélice optimisé pour une meilleure évacuation des copeaux.
- Contrôle de température optimal lors de l'usinage de matériaux difficiles à usiner.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	CHW [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
Longue	ur HA			Σ		НА					
1	6		2	50		0,05	4	1	23000880	SCM-HC4M-M010C-M50HA6 HP40	39,43
2	6		4	50		0,05	4	1	23000881	SCM-HC4M-M020C-M50HA6 HP40	39,43
3	6		6	57		0,1	4	1	23000882	SCM-HC4M-M030C-M57HA6 HP40	39,43
4	6		9	57		0,1	4	1	23000883	SCM-HC4M-M040C-M57HA6 HP40	39,43
5	6		13	57		0,1	4	1	23000884	SCM-HC4M-M050C-M57HA6 HP40	39,43
6	6	5,7	13	57	20	0,15	4	1	23000885	SCM-HC4M-M060C-M57HA TI40	39,43
8	8	7,7	19	63	25	0,2	4	1	23000886	SCM-HC4M-M080C-M63HA TI40	50,06
10	10	9,7	22	72	30	0,2	4	1	23000887	SCM-HC4M-M100C-M72HA TI40	68,36
12	12	11,6	26	83	36	0,25	4	1	23000888	SCM-HC4M-M120C-M83HA TI40	100,28
16	16	15,6	32	92	42	0,3	4	1	23000889	SCM-HC4M-M160C-M92HA TI40	170,04
20	20	19,6	38	104	52	0,3	4	1	23000890	SCM-HC4M-M200C-M104HA TI40	276,41
25	25	24,5	45	125	65	0,3	4	1	23000891	SCM-HC4M-M250C-M125HA TI40	409,29

Longue	ur HB			ζ		HB					
1	6		2	50		0,05	4	1	23000915	SCM-HC4M-M010C-M50HB6 HP40	40,67
2	6		4	50		0,05	4	1	23000916	SCM-HC4M-M020C-M50HB6 HP40	40,67
3	6		6	57		0,1	4	1	23000917	SCM-HC4M-M030C-M57HB6 HP40	40,67
4	6		9	57		0,1	4	1	23000918	SCM-HC4M-M040C-M57HB6 HP40	40,67
5	6		13	57		0,1	4	1	23000919	SCM-HC4M-M050C-M57HB6 HP40	40,67
6	6	5,7	13	57	20	0,15	4	1	23000920	SCM-HC4M-M060C-M57HB TI40	40,67
8	8	7,7	19	63	25	0,2	4	1	23000921	SCM-HC4M-M080C-M63HB TI40	51,62
10	10	9,7	22	72	30	0,2	4	1	23000922	SCM-HC4M-M100C-M72HB TI40	70,40
12	12	11,6	26	83	36	0,25	4	1	23000923	SCM-HC4M-M120C-M83HB TI40	103,24
16	12 12 11,6 26 8 16 16 15,6 32 9				42	0,3	4	1	23000924	SCM-HC4M-M160C-M92HB TI40	175,22

Suite voir page suivante

44 SCT Prix par pièce hors TVA.

Fraise HPC 4 arêtes de coupes HC4M

D([mm		DN [mm]	APMX [mm]	LF [mm]	LU [mm]	CHW [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
20	20	19,6	38	104	52	0,3	4	1	23000925	SCM-HC4M-M200C-M104HB TI40	284,71
2!	25	24,5	45	125	65	0,3	4	1	23000926	SCM-HC4M-M250C-M125HB TI40	421,59

Fraise HPC 5 arêtes de coupes HCD5M

Vitesses de coupe recommandées [m/min] – Version angulaire rayon avec diviseurs de copeaux, 2xD

Gro	oupe de mato	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Fra	isage d	ynamio	լue a _p =	= 2 x D(:; a¸ = 0		\$		
					Vitesse de coupe v.			aved	Avance diamè	de der tre de t	t f¸ [mr trancha	n/dent nt DC [] mm]		
D	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²		[m/min]	3	4	5	6	8	10	12	16	20	25
r	Aciei	d'acier	500 jusqu'à 700 N/mm²												
			700 jusqu'à 1 000 N/mm²												
			1 000 jusqu'à 1 400 N/mm²												
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	140	0.038	0,050	0,063	0,076	0.101	0,126	0.151	0,202	0,252	0,315
IVI	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	•	130	,	0,050	'		0,101	,	0,151	· ·	0,252	·
		Réfractaire et ferritique-austé	<u>'</u>	•	100	0,038	0,050		0,076		0,126		0,202		
K	Fonte	Fonte à graphite lamellaire	jusqu'à 180 HB		100	0,030	0,030	0,003	0,070	0,101	0,120	0,131	0,202	0,232	0,515
IX.	Tonic	(GJL, GG, fonte grise)	Jusqu a 100 Hb												
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB												
N	Métaux	Aluminium	Alu jusqu'à 10% Si												
	non ferreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laitor	rouge												
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co												
	liages et alliages de	Titane pur		•	100	0,038	0,050	0,063	0,076	0,101	0,126	0,151	0,202	0,252	0,315
	titane	Alliages de titane		•	100	0,038	0,050	0,063	0,076	0,101	0,126	0,151	0,202	0,252	0,315
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissable													
		Matières plastiques renforcée graphite	s de fibres PRFV/PRFC,												

• = parfaitement adapté \circ = adapté

Prix par pièce hors TVA. SCT | 45

Fraise HPC 5 arêtes de coupes HCD5M

Vitesses de coupe recommandées [m/min] – Version angulaire rayon avec diviseurs de copeaux, 3xD

Gre	oupe de mate	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Fra	isage d	ynamio	լue a _p =	= 3 x D(C; a _e = 0		\$		
					Vitesse de coupe v _c				Avance	de der	ıt f¸ [mı trancha	n/dent]		
					[m/min]	3	4	5	6	8	10	12	16	20	25
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²												
		u aciei	500 jusqu'à 700 N/mm²												
			700 jusqu'à 1 000 N/mm²												
			1 000 jusqu'à 1 400 N/mm²												
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	140	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	•	130	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
		Réfractaire et ferritique-austé	nitique (Duplex)	•	100	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB												
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB												
N	Métaux non ferreux	Aluminium	Alu jusqu'à 10% Si												
	non ierreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laiton	rouge												
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co												
	liages et alliages de	Titane pur		•	100	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
	titane	Alliages de titane		•	100	0,034	0,045	0,057	0,068	0,091	0,113	0,136	0,181	0,227	0,284
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissables	5												
		Matières plastiques renforcée graphite	s de fibres PRFV/PRFC,												

^{• =} parfaitement adapté

^{∘ =} adapté

Fraise HPC 5 arêtes de coupes HCD5M

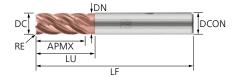
Vitesses de coupe recommandées [m/min] – Version angulaire rayon avec diviseurs de copeaux, 4xD

Gro	oupe de mate	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Fra	isage d	ynamic	լue a _թ =	= 4 x D(C; a _e = 0	0,06	B		
					Vitesse de coupe v _c				Avance	de der	it f, [mi	m/dent int DC []		
					[m/min]	3	4	5	6	8	10	12	16	20	25
P	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²												
		d'acier	500 jusqu'à 700 N/mm²												
			700 jusqu'à 1 000 N/mm²												
			1 000 jusqu'à 1 400 N/mm²												
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	140	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571	•	130	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
		Réfractaire et ferritique-austé	nitique (Duplex)	•	100	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB												
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB												
N	Métaux	Aluminium	Alu jusqu'à 10% Si												
	non ferreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laiton	rouge												
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co												
	liages et alliages de	Titane pur		•	100	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
	titane	Alliages de titane		•	100	0,030	0,040	0,050	0,060	0,081	0,101	0,121	0,161	0,202	0,252
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane	itane	jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissables	5												
		Matières plastiques renforcée graphite	s de fibres PRFV/PRFC,												

^{• =} parfaitement adapté \circ = adapté

Fraise HPC 5 arêtes de coupes HCD5M

Vitesses de coupe recommandées [m/min] – Version angulaire rayon avec diviseurs de copeaux, 5xD

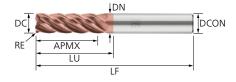

Gro	oupe de mate	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Fra	isage d	ynamic	լue a _թ =	= 5 x D(:; a _e = 0	,06	\$		
					Vitesse de coupe v _c				Avance	de der tre de t	t f¸ [mɪ trancha	n/dent nt DC []		
_		- 1	. () 500 N/ 2		[m/min]	3	4	5	6	8	10	12	16	20	25
Р	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²												
			500 jusqu'à 700 N/mm²												
			700 jusqu'à 1 000 N/mm²												
			1 000 jusqu'à 1 400 N/mm²												
M	Acier inoxydable	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	140	0,026	0,035	,	0,053		0,088			0,176	
	Похучаьте	Austénitique	p.ex. 1.4301, 1.4571	•	130	0,026	0,035		0,053	0,071	0,088	0,106	0,141	0,176	0,221
		Réfractaire et ferritique-austé	nitique (Duplex)	•	100	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB												
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB												
N	Métaux	Aluminium	Alu jusqu'à 10% Si												
	non ferreux		Alu > 10% Si												
		Cuivre, laiton, bronze et laiton	rouge												
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co												
	liages et alliages de	Titane pur		•	100	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
	titane	Alliages de titane		•	100	0,026	0,035	0,044	0,053	0,071	0,088	0,106	0,141	0,176	0,221
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiques													
		Plastiques thermodurcissables	5												
		Matières plastiques renforcée graphite	s de fibres PRFV/PRFC,												

^{• =} parfaitement adapté

^{○ =} adapté

Fraise HPC 5 arêtes de coupes HCD5M

Version angulaire rayon avec diviseurs de copeaux, 2xD - métrique


Fraise avec brise copeaux et dégagement arrière pour l'usinage dynamique et le fraisage trochoïdale. Grâce à leur géométrie et à leur revêtement spécifiques au matériau, les fraises sont optimisées pour l'utilisation dans des matériaux inoxydables.

Caractéristiques:

- Division inégale pour un travail sans vibrations.
- Angle d'hélice optimisé pour une meilleure évacuation des copeaux.
- Contrôle de température optimal lors de l'usinage de matériaux difficiles à usiner.

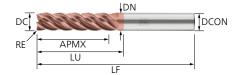
DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
Longue	ır HB										
6	6	5,7	13	57	20	0,5	5	1	23000950	SCM-HCD5M-M060R05-M57HB TI40	48,18
8	8	7,7	19	63	25	0,5	5	1	23000951	SCM-HCD5M-M080R05-M63HB TI40	61,22
10	10	9,7	22	72	30	0,5	5	1	23000952	SCM-HCD5M-M100R05-M72HB TI40	83,48
12	12	11,6	26	83	36	0,5	5	1	23000953	SCM-HCD5M-M120R05-M83HB TI40	122,29
16	16	15,6	32	92	42	1	5	1	23000954	SCM-HCD5M-M160R10-M92HB TI40	207,54
20	20	19,6	38	104	52	1	5	1	23000955	SCM-HCD5M-M200R10-M104HB TI40	337,24
25	25	24,5	45	124	65	1	5	1	23000956	SCM-HCD5M-M250R10-M124HB TI40	499,36

Version angulaire rayon avec diviseurs de copeaux, 3xD - métrique

Fraise avec brise copeaux et dégagement arrière pour l'usinage dynamique et le fraisage trochoïdale. Grâce à leur géométrie et à leur revêtement spécifiques au matériau, les fraises sont optimisées pour l'utilisation dans des matériaux inoxydables.

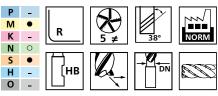
Caractéristiques:

- Division inégale pour un travail sans vibrations.
- Angle d'hélice optimisé pour une meilleure évacuation des copeaux.
- Contrôle de température optimal lors de l'usinage de matériaux difficiles à usiner.

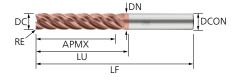

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR			
3xD HB	ЗхD НВ													
6	6	5,7	19	66	23	0,5	5	1	23000957	SCM-HCD5M-M060R05-L66HB TI40	55,40			
8	8	7,7	25	70	29	0,5	5	1	23000958	SCM-HCD5M-M080R05-L70HB TI40	70,40			
10	10	9.7	31	78	35	0.5	5	1	23000959	SCM-HCD5M-M100R05-L78HB TI40	95.99			

U	U	J,1	13	00	23	0,5	,		23000331	JCIVI TICDJIVI IVIOODINOJ EODITO TI 4 0	33,40
8	8	7,7	25	70	29	0,5	5	1	23000958	SCM-HCD5M-M080R05-L70HB TI40	70,40
10	10	9,7	31	78	35	0,5	5	1	23000959	SCM-HCD5M-M100R05-L78HB TI40	95,99
12	12	11,6	38	92	42	0,5	5	1	23000960	SCM-HCD5M-M120R05-L92HB TI40	140,62
16	16	15,6	50	110	56	1	5	1	23000961	SCM-HCD5M-M160R10-L110HB TI40	238,66
20	20	19,6	62	125	70	1	5	1	23000962	SCM-HCD5M-M200R10-L125HB TI40	387,83
25	25	24,5	78	150	88	1	5	1	23000963	SCM-HCD5M-M250R10-L150HB TI40	574,28

Prix par pièce hors TVA. SCT 49


Fraise HPC 5 arêtes de coupes HCD5M

Version angulaire rayon avec diviseurs de copeaux, 4xD - métrique


Fraise avec brise copeaux et dégagement arrière pour l'usinage dynamique et le fraisage trochoïdale. Grâce à leur géométrie et à leur revêtement spécifiques au matériau, les fraises sont optimisées pour l'utilisation dans des matériaux inoxydables.

Caractéristiques:

- Division inégale pour un travail sans vibrations.
- Angle d'hélice optimisé pour une meilleure évacuation des copeaux.
- Contrôle de température optimal lors de l'usinage de matériaux difficiles à usiner.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
4xD HB											
6	6	5,7	24	66	29	0,5	5	1	23000964	SCM-HCD5M-M060R05-XL66HB TI40	60,80
8	8	7,7	32	74	37	0,5	5	1	23000965	SCM-HCD5M-M080R05-XL74HB TI40	79,58
10	10	9,7	40	88	45	0,5	5	1	23000966	SCM-HCD5M-M100R05-XL88HB TI40	108,51
12	12	11,6	48	105	54	0,5	5	1	23000967	SCM-HCD5M-M120R05-XL105HB TI40	158,97
16	16	15,6	64	124	72	1	5	1	23000968	SCM-HCD5M-M160R10-XL124HB TI40	269,79
20	20	19,6	80	148	90	1	5	1	23000969	SCM-HCD5M-M200R10-XL148HB TI40	438,42
25	25	24,5	100	182	115	1	5	1	23000970	SCM-HCD5M-M250R10-XL182HB TI40	649,18

Version angulaire rayon avec diviseurs de copeaux, 5xD - métrique

Fraise avec brise copeaux et dégagement arrière pour l'usinage dynamique et le fraisage trochoïdale. Grâce à leur géométrie et à leur revêtement spécifiques au matériau, les fraises sont optimisées pour l'utilisation dans des matériaux inoxydables.

Caractéristiques:

- Division inégale pour un travail sans vibrations.
- Angle d'hélice optimisé pour une meilleure évacuation des copeaux.
- Contrôle de température optimal lors de l'usinage de matériaux difficiles à usiner.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR			
5xD HB														
6	6	5,7	30	74	35	0,5	5	1	SCM-HCD5M-M060R05-XXL74HB TI40	67,82				
8	8	7,7	40	84	45	0,5	5	1	23000972	SCM-HCD5M-M080R05-XXL84HB TI40	88,77			
10	10	9,7	50	100	55	0,5	5	1	23000973	SCM-HCD5M-M100R05-XXL100HB TI40	121,03			
12	12	11,6	60	115	66	0,5	5	1	23000974	SCM-HCD5M-M120R05-XXL115HB TI40	177,31			
16	16	15,6	80	142	88	1	5	1	23000975	SCM-HCD5M-M160R10-XXL142HB TI40	300,92			
20	20	19,6	100	165	110	1	5	1	23000976	SCM-HCD5M-M200R10-XXL165HB TI40	489,00			
25	25	24.5	125	200	138	1	5	1	23000977	SCM-HCD5M-M250R10-XXL200HB TI40	724.08			

50 SCT Prix par pièce hors TVA

Aperçu de la compatibilité avec les matériaux

Performance Aluminium

Grou	pe de matériaux		Fraise HPC 3 arêtes de coupes HC3N
P	Acier	Tous les types d'acier et d'acier jusqu'à 1 400 N/mm²	
M	Acier inoxydable	Ferritique et martensitique	
		Austénitique	
		Réfractaire et ferritique-austénitique (Duplex)	
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	
N	Métaux non ferreux	Aluminium	•
		Cuivre, laiton, bronze, laiton rouge	•
S	Superalliages et alliages de titane	Superalliages réfractaires à base Fe, Ni et Co	
		Titane pur	
		Alliages de titane	
Н	Alliages de titane	Aciers traités et trempés jusqu'à 50 HRC	
		Aciers trempés jusqu'à 58 HRC	
		Aciers trempés à partir de 58 HRC	
0	Autres	Matières thermoplastiques	•
		Plastiques thermodurcissables	•
		Matières plastiques renforcées de fibres PRFV/PRFC, graphite	

• = parfaitement adapté

○ = adapté

Vitesses de coupe recommandées [m/min] – Version angulaire rayon et chanfrein

Gro	oupe de mate	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Rainur	age dan	s le plei	n a _p = 1	x DC; a	= 1 x D			
					Vitesse de coupe v.					dent f _z de tran				
					[m/min]	3	4	5	6	8	10	12	16	20
Р	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²											
		d'acier	500 jusqu'à 700 N/mm²											
			700 jusqu'à 1 000 N/mm²											
			1 000 jusqu'à 1 400 N/mm²											
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122											
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571											
		Réfractaire et ferritique-austé	nitique (Duplex)											
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB											
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB											
N	Métaux	Aluminium	Alu jusqu'à 10% Si	•	450	0,027	0,036	0,045	0,055	0,073	0,091	0,109	0,145	0,182
	non ferreux		Alu > 10% Si	•	420	0,027	0,036	0,045	0,055	0,073	0,091	0,109	0,145	0,182
		Cuivre, laiton, bronze et laiton	rouge	•	350	0,027	0,036	0,045	0,055	0,073	0,091	0,109	0,145	0,182
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co											
	liages et alliages de	Titane pur												
	titane	Alliages de titane												
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC											
	titane		jusqu'à 58 HRC											
			> 58 HRC											
0	Autres	Matières thermoplastiques		•	400	0,027	0,036	0,045	0,055	0,073	0,091	0,109	0,145	0,182
		Plastiques thermodurcissables	5											
		Matières plastiques renforcée graphite	s de fibres PRFV/PRFC,											

^{• =} parfaitement adapté

^{○ =} adapté

Vitesses de coupe recommandées [m/min] – Version angulaire rayon et chanfrein

Gr	oupe de mate	ériaux	Cahier des charges/ exemple de matériau	Aptitude		Co	ntourna	ge a _p =	max; a _e	= 0,25	x DC			
					Vitesse de coupe v _c					dent f _z de tran				
					[m/min]	3	4	5	6	8	10	12	16	20
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²											
		u acier	500 jusqu'à 700 N/mm²											
			700 jusqu'à 1 000 N/mm²											
			1 000 jusqu'à 1 400 N/mm²											
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122											
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571											
		Réfractaire et ferritique-austén	itique (Duplex)											
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB											
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB											
N	Métaux	Aluminium	Alu jusqu'à 10% Si	•	520	0,041	0,055	0,068	0,082	0,109	0,136	0,164	0,218	0,273
	non ferreux		Alu > 10% Si	•	480	0,041	0,055	0,068	0,082	0,109	0,136	0,164	0,218	0,273
		Cuivre, laiton, bronze et laiton	rouge	•	400	0,041	0,055	0,068	0,082	0,109	0,136	0,164	0,218	0,273
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co											
	liages et alliages de	Titane pur												
	titane	Alliages de titane												
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC											
	titane		jusqu'à 58 HRC											
			> 58 HRC											
0	Autres	Matières thermoplastiques		•	450	0,041	0,055	0,068	0,082	0,109	0,136	0,164	0,218	0,273
		Plastiques thermodurcissables												
		Matières plastiques renforcées	de fibres PRFV/PRFC, graphite											

^{• =} parfaitement adapté

^{○ =} adapté

Fraise HPC 3 arêtes de coupes HC3N

Vitesses de coupe recommandées [m/min] – Version angulaire chanfrein, extra-long

Gro	oupe de mate	ériaux	Cahier des charges/exemple de matériau	Aptitude	Rainurage d	ans le plein a _p =	1 x DC; a _e = 1 x D	
					Vitesse de coupe v _c		e de dent f¸ [mm/e ètre de tranchant	
					[m/min]	10	12	16
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²					
			500 jusqu'à 700 N/mm²					
			700 jusqu'à 1 000 N/mm²					
			1 000 jusqu'à 1 400 N/mm ²					
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122					
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571					
		Réfractaire et ferritique-austénitique (C	Duplex)					
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB					
		fonte grise) Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB					
N	Métaux	Aluminium	Alu jusqu'à 10% Si	•	430	0,080	0,100	0,120
	non ferreux		Alu > 10% Si	•	400	0,080	0,100	0,120
		Cuivre, laiton, bronze et laiton rouge		•	320	0,080	0,100	0,120
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co					
	liages et alliages de	Titane pur						
	titane	Alliages de titane						
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC					
	titane		jusqu'à 58 HRC					
			> 58 HRC					
0	Autres	Matières thermoplastiques		•	450	0,080	0,100	0,120
		Plastiques thermodurcissables						
		Matières plastiques renforcées de fibre	s PRFV/PRFC, graphite					

^{• =} parfaitement adapté

^{○ =} adapté

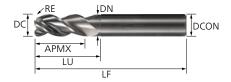
Vitesses de coupe recommandées [m/min] – Version angulaire chanfrein, extra-long

Gr	oupe de mate	ériaux	Cahier des charges/exemple de matériau	Aptitude	Contournage $a_p = \text{full}$; $a_e = 0.4x \text{ DC}$						
					Vitesse de coupe v _c	Avance avec diam					
					[m/min]	10	12	16			
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²								
			500 jusqu'à 700 N/mm²								
			700 jusqu'à 1 000 N/mm²								
			1 000 jusqu'à 1 400 N/mm²								
М	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122								
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571								
		Réfractaire et ferritique-austénitique (Du	plex)								
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB								
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB								
N	Métaux	Aluminium	Alu jusqu'à 10% Si	•	490	0,092	0,115	0,138			
	non ferreux		Alu > 10% Si	•	450	0,092	0,115	0,138			
		Cuivre, laiton, bronze et laiton rouge		•	360	0,092	0,115	0,138			
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co								
	liages et alliages de	Titane pur									
	titane	Alliages de titane									
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC								
	titane		jusqu'à 58 HRC								
			> 58 HRC								
0	Autres	Matières thermoplastiques		•	450	0,092	0,115	0,138			
		Plastiques thermodurcissables									
		Matières plastiques renforcées de fibres l	PRFV/PRFC, graphite								

^{• =} parfaitement adapté

^{○ =} adapté

Vitesses de coupe recommandées [m/min] – Version angulaire chanfrein, >4xD


Gro	oupe de mat	ériaux	Cahier des charges/ exemple de matériau	Aptitude	Fraisage dynamique a _p = full; a _e = 0,10						
					Vitesse de coupe v.				t f, [mm/deranchant D		
					[m/min]	6	8	10	12	16	20
Р	Acier	Tous les types d'acier et	jusqu'à 500 N/mm²								
		d'acier	500 jusqu'à 700 N/mm²								
			700 jusqu'à 1 000 N/mm²								
			1 000 jusqu'à 1 400 N/mm²								
M	Acier	Ferritique et martensitique	p.ex. 1.4105, 1.4122								
	inoxydable	Austénitique	p.ex. 1.4301, 1.4571								
		Réfractaire et ferritique-austér	nitique (Duplex)								
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB								
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB								
N	Métaux	Aluminium	Alu jusqu'à 10% Si		450	0,067	0,090	0,112	0,134	0,179	0,224
	non ferreux		Alu > 10% Si	•	420	0,067	0,090	0,112	0,134	0,179	0,224
		Cuivre, laiton, bronze et laiton	rouge	•	350	0,067	0,090	0,112	0,134	0,179	0,224
S	Superal-	Superalliages réfractaires	À base Fe, Ni et Co								
	liages et alliages de	Titane pur	,								
	titane	Alliages de titane									
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC								
	titane		jusqu'à 58 HRC								
			> 58 HRC								
0	Autres	Matières thermoplastiques		•	450	0,067	0,090	0,112	0,134	0,179	0,224
		Plastiques thermodurcissables									
		Matières plastiques renforcées	de fibres PRFV/PRFC, graphite								

^{• =} parfaitement adapté

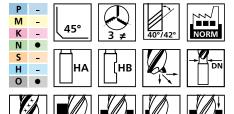
^{∘ =} adapté

Fraise HPC 3 arêtes de coupes HC3N

Version angulaire rayon - métrique

Fraise pour l'utilisation polyvalente en ébauche et finition. Parfaitement adaptée à l'usinage d'alliages d'aluminium, de métaux non-ferreux ou encore de plastiques.

Caractéristiques :


- Goujure polie et à grand volume pour un contrôle et évacuation optimal des copeaux.
- Sécurité des processus accrue à vitesses de coupe élevées.
- Division inégale pour un travail sans vibrations.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	RE [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
Longue	ur HA			Σ		НА					
6	6	5,7	13	57	20	0,5	3	1	23000428	SCM-HC3N-M060R05-M57HA UC40	37,45
8	8	7,7	19	63	25	0,5	3	1	23000429	SCM-HC3N-M080R05-M63HA UC40	47,56
						1	3	1	23000430	SCM-HC3N-M080R10-M63HA UC40	47,56
10	10	9,7	22	72	30	1	3	1	23000431	SCM-HC3N-M100R10-M72HA UC40	64,94
						1,5	3	1	23000432	SCM-HC3N-M100R15-M72HA UC40	64,94
						2	3	1	23000433	SCM-HC3N-M100R20-M72HA UC40	64,94
12	12	11,6	26	83	36	1	3	1	23000434	SCM-HC3N-M120R10-M83HA UC40	95,26
						1,5	3	1	23000435	SCM-HC3N-M120R15-M83HA UC40	95,26
						2	3	1	23000436	SCM-HC3N-M120R20-M83HA UC40	95,26
16	16	15,6	32	92	42	1	3	1	23000437	SCM-HC3N-M160R10-M93HA UC40	161,54
						2	3	1	23000438	SCM-HC3N-M160R20-M93HA UC40	161,54
						3	3	1	23000439	SCM-HC3N-M160R30-M93HA UC40	161,54
20	20	19,6	38	104	52	2	3	1	23000440	SCM-HC3N-M200R20-M104HA UC40	262,59
						3	3	1	23000441	SCM-HC3N-M200R30-M104HA UC40	262,59

Version angulaire chanfrein - métrique

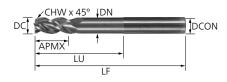
Fraise pour l'utilisation polyvalente en ébauche et finition. Parfaitement adaptée à l'usinage d'alliages d'aluminium, de métaux non-ferreux ou encore de plastiques.

Caractéristiques:

- Goujure polie et à grand volume pour un contrôle et évacuation optimal des copeaux.
- Sécurité des processus accrue à vitesses de coupe élevées.
- Division inégale pour un travail sans vibrations.

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	CHW [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
Longue	ur HA			Σ		НА					
3	6		8	57		0,05	3	1	23000410	SCM-HC3N-M030C-M57HA6 UC40	32,57
4	6		11	57		0,05	3	1	23000411	SCM-HC3N-M040C-M57HA6 UC40	32,57
5	6		13	57		0,1	3	1	23000412	SCM-HC3N-M050C-M57HA6 UC40	32,57
6	6	5,7	13	57	20	0,1	3	1	23000413	SCM-HC3N-M060C-M57HA UC40	32,57
8	8	7,7	19	63	25	0,15	3	1	23000414	SCM-HC3N-M080C-M63HA UC40	41,36
10	10	9,7	22	72	30	0,2	3	1	23000415	SCM-HC3N-M100C-M72HA UC40	56,47
12	12	11,7	26	83	36	0,25	3	1	23000416	SCM-HC3N-M120C-M83HA UC40	82,84

Suite voir page suivante


Prix par pièce hors TVA. SCT | 57

Fraise HPC 3 arêtes de coupes HC3N

DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	CHW [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
16	16	15,6	32	92	42	0,3	3	1	23000417	SCM-HC3N-M160C-M93HA UC40	140,48
20	20	19,6	38	104	52	0,35	3	1	23000418	SCM-HC3N-M200C-M104HA UC40	228,34

Longue	ur HB			δ		нв					
3	6		8	57		0,05	3	1	23000419	SCM-HC3N-M030C-M57HB6 UC40	33,60
4	6		11	57		0,05	3	1	23000420	SCM-HC3N-M040C-M57HB6 UC40	33,60
5	6		13	57		0,05	3	1	23000421	SCM-HC3N-M050C-M57HB6 UC40	33,60
6	6	5,7	13	57	20	0,1	3	1	23000422	SCM-HC3N-M060C-M57HB UC40	33,60
8	8	7,7	19	63	25	0,15	3	1	23000423	SCM-HC3N-M080C-M63HB UC40	42,65
10	10	9,7	22	72	30	0,2	3	1	23000424	SCM-HC3N-M100C-M72HB UC40	58,16
12	12	11,7	26	83	36	0,25	3	1	23000425	SCM-HC3N-M120C-M83HB UC40	85,28
16	16	15,6	32	92	42	0,3	3	1	23000426	SCM-HC3N-M160C-M93HB UC40	144,74
20	20	19,6	38	104	52	0,35	3	1	23000427	SCM-HC3N-M200C-M104HB UC40	235,20

Version angulaire chanfrein, extra-long - métrique

Fraise avec collet pour une utilisation en surplomb important ou dans les cavités profondes. Parfaitement adaptée à l'usinage d'alliages d'aluminium, de métaux non-ferreux ou encore de plastiques.

М

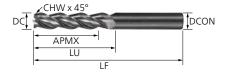
K

Caractéristiques:

- Goujure polie et à grand volume pour un contrôle et évacuation optimal des copeaux.
- Sécurité des processus accrue à vitesses de coupe élevées.
- Division inégale pour un travail sans vibrations.

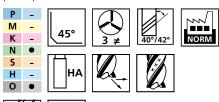
DC [mm]	DCON [mm]	DN [mm]	APMX [mm]	LF [mm]	LU [mm]	CHW [mm]	ZEFP		Réf. article	Désignation	Prix/ pièce EUR
HA extra	a-long			Σ		НА					
10	10	9,7	22	104	55	0,2	3	1	23000448	SCM-HC3N-M100C-M104HA UC40	64,94
12	12	11,6	26	110	64	0,25	3	1	23000449	SCM-HC3N-M120C-M110HA UC40	95,26
16	16	15.6	32	130	75	0.3	3	1	23000450	SCM-HC3N-M160C-M130HA UC40	161 54

Offre de lancement


1 acheté = 1 offert

Valable sur l'ensemble du catalogue Du 02/09 au 30/11/2025

58 SCT Prix par pièce hors TVA.


Fraise HPC 3 arêtes de coupes HC3N

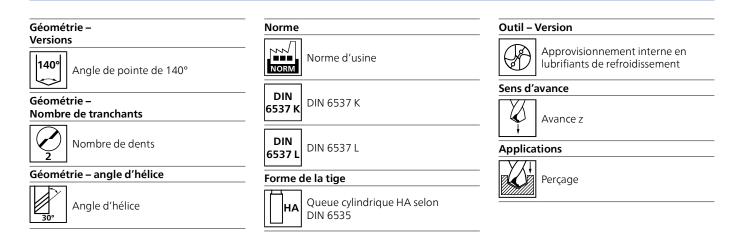
Version angulaire chanfrein, >4xD - métrique

Fraise avec grande longueur utile pour l'usinage dynamique et le fraisage trochoïdal. Parfaitement adaptée à l'usinage d'alliages d'aluminium, de métaux non-ferreux ou encore de plastiques.

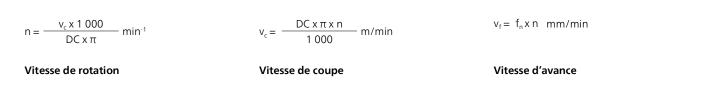
Caractéristiques:

- Goujure polie et à grand volume pour un contrôle et évacuation optimal des copeaux.
- Sécurité des processus accrue à vitesses de coupe élevées.
- Division inégale pour un travail sans vibrations.

DC [mm]	DCON [mm]	APMX [mm]	LF [mm]	CHW [mm]	ZEFP		Réf. article	Désignation	Prix/pièce EUR
>4xD HA			δ]на				
6	6	26	75	0,1	3	1	23000442	SCM-HC3N-M060C-XXL75HA UC40	42,34
8	8	36	78	0,15	3	1	23000443	SCM-HC3N-M080C-XXL78HA UC40	53,77
10	10	45	104	0,2	3	1	23000444	SCM-HC3N-M100C-XXL104HA UC40	73,41
12	12	53	110	0,25	3	1	23000445	SCM-HC3N-M120C-XXL110HA UC40	107,68
16	16	63	130	0,3	3	1	23000446	SCM-HC3N-M160C-XXL130HA UC40	182,61
20	20	75	150	0,35	3	1	23000447	SCM-HC3N-M200C-XXL150HA UC40	296,85


Prix par pièce hors TVA.

Aperçu de la compatibilité avec les matériaux



Gro	oupe de matériaux		Forets en carbure monobloc universel U
Р	Acier	Tous les types d'acier et d'acier jusqu'à 1 400 N/mm²	•
М	Acier inoxydable	Ferritique et martensitique	•
		Austénitique	•
		Réfractaire et ferritique-austénitique (Duplex)	0
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	•
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	•
N	Métaux non ferreux	Aluminium	0
		Cuivre, laiton, bronze, laiton rouge	0
S	Superalliages et alliages de	Superalliages réfractaires à base Fe, Ni et Co	0
	titane	Titane pur	0
		Alliages de titane	0
Н	Alliages de titane	Aciers traités et trempés jusqu'à 50 HRC	•
		Aciers trempés jusqu'à 58 HRC	0
		Aciers trempés à partir de 58 HRC	0
0	Autres	Matières thermoplastiques	0
		Plastiques thermodurcissables	0
		Matières plastiques renforcées de fibres PRFV/PRFC, graphite	

Explication des pictogrammes utilisés

Formules de calcul des données de coupe

Formules de calcul des données de coupe

Explication des abréviations

- DC = diamètre de tranchant en [mm]
- f_n = avance par tour

- n = Vitesse de rotation de la broche en [tr/min]
- \mathbf{v}_{c} = vitesse de coupe en [m/min]
- v_f = Vitesse d'avance en [mm/min]

Explication de la désignation de l'article

SCD-U-5D-M12.500-60IC LA40

① Groupe d'outils

SCD = foret carbure monobloc (Solid Carbide Drill)

② Gamme

U = Universelle

③ Forme

Vide, si foret standard.

4 Groupe de matériaux

Groupes ISO P, M, K, N, S, H, O. Combinaisons Exemple : MS Vide, si non spécifié.

⑤ Longueur utile en relation L/D

 $3D \sim 3xD$ $5D \sim 5xD$ $8D \sim 8xD$

6 Unités

M = métrique

⑦ Diamètre du tranchant

Métrique : mm x 1000 Exemple : D 10,5 mm = 10.500 Exemple : D 8,5 mm = 08.500

® Version

Métrique : Longueur utile LU en mm

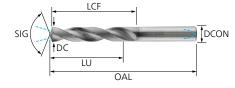
® Forme de la tige

Vide, si tige cylindrique (HA)

11) Alimentation en lubrifiants

Vide, si absence de IK IC = alimentation interne en lubrifiants (Inner coolant)

12 *


Matériau de coupe

*En option

Explication des abréviations de la ISO 13399

LU = longueur utile
DC = diamètre du tranchant
DCON = diamètre de tige
OAL = longueur totale
SIG = angle de pointe

LCF = longueur des gorges de dégagement

Foret en carbure monobloc universel U

Vitesses de coupe recommandées [m/min] – Version 3xD / 5xD

Gr	oupe de maté	riaux	Cahier des charges/ exemple de matériau			P	erçage (3-5	5xD avec re	froidissem	ent intern	e)		
			materiau		Vitesse de coupe v.			avec di		[mm/tour] tranchant I			
					[m/min]	3	4	5	6	8	10	12	16
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²	•	110	0,110	0,132	0,165	0,176	0,231	0,242	0,286	0,341
			500 jusqu'à 700 N/mm²	•	90	0,100	0,120	0,150	0,160	0,210	0,220	0,260	0,310
			700 jusqu'à 1 000 N/mm²	•	75	0,085	0,102	0,128	0,136	0,179	0,187	0,221	0,264
			1 000 jusqu'à 1 400 N/mm²	•	60	0,064	0,077	0,096	0,102	0,134	0,140	0,166	0,198
M	Acier inoxy- dable	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	60	0,085	0,102	0,128	0,136	0,179	0,187	0,221	0,264
		Austénitique	p.ex. 1.4301, 1.4571	•	50	0,050	0,075	0,088	0,100	0,110	0,130	0,140	0,170
		Réfractaire et ferritique (Duplex)		0	35	0,038	0,056	0,066	0,075	0,083	0,098	0,105	0,128
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	110	0,150	0,185	0,233	0,280	0,300	0,335	0,375	0,450
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	80	0,135	0,167	0,209	0,252	0,270	0,302	0,338	0,405
N	Métaux non ferreux	Aluminium	Alu jusqu'à 10% Si	0	250	0,150	0,185	0,233	0,280	0,300	0,335	0,375	0,450
			Alu > 10% Si	0	220	0,135	0,167	0,209	0,252	0,270	0,302	0,338	0,405
		Cuivre, laiton, bronze e		0	160	0,100	0,120	0,150	0,160	0,210	0,220	0,260	0,310
S	Superal- liages et	Superalliages réfractaires	À base Fe, Ni et Co	0	25	0,034	0,047	0,051	0,055	0,068	0,085	0,102	0,119
	alliages de titane	Titane pur		0	40	0,040	0,055	0,060	0,065	0,080	0,100	0,120	0,140
		Alliages de titane		0	30	0,034	0,047	0,051	0,055	0,068	0,085	0,102	0,119
Н	Alliages de	Aciers traités et	jusqu'à 50 HRC	0	30	0,026	0,035	0,038	0,041	0,051	0,064	0,077	0,089
	titane	trempés	jusqu'à 58 HRC										
			> 58 HRC										
0	Autres	Matières thermoplastic											
		Plastiques thermodurci											
		Matières plastiques rer PRFV/PRFC, graphite	itorcées de fibres										

^{• =} parfaitement adapté

^{∘ =} adapté

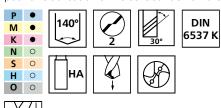
Foret en carbure monobloc universel U

Vitesses de coupe recommandées [m/min] - Version 8xD

Gr	oupe de mato	ériaux	Cahier des charges/ exemple de matériau		charges/ exemple de			ı	Perçage (8)	κD avec ref					
					Vitesse de coupe v.			avec dis	Avance f _. amètre de	[mm/tour]					
					[m/min]	3	4	5	6	8	10	12	16		
P	Acier	Tous les types d'acier et d'acier	jusqu'à 500 N/mm²	•	102	0,102	0,123	0,153	0,164	0,215	0,225	0,266	0,317		
			500 jusqu'à 700 N/mm²	•	84	0,093	0,112	0,140	0,149	0,195	0,205	0,242	0,288		
			700 jusqu'à 1 000 N/mm²	•	70	0,079	0,095	0,119	0,126	0,166	0,174	0,206	0,245		
			1 000 jusqu'à 1 400 N/mm²	•	56	0,059	0,071	0,089	0,095	0,125	0,130	0,154	0,184		
M	Acier inoxy- dable	Ferritique et martensitique	p.ex. 1.4105, 1.4122	•	56	0,079	0,095	0,119	0,126	0,166	0,174	0,206	0,245		
		Austénitique	p.ex. 1.4301, 1.4571	•	47	0,047	0,070	0,081	0,093	0,102	0,121	0,130	0,158		
		Réfractaire et ferritique-a (Duplex)		0	33	0,035	0,052	0,061	0,070	0,077	0,091	0,098	0,119		
K	Fonte	Fonte à graphite lamellaire (GJL, GG, fonte grise)	jusqu'à 180 HB	•	102	0,140	0,172	0,216	0,260	0,279	0,312	0,349	0,419		
		Fonte à graphite sphéroïdale et malléable (GJS, GGG)	160 jusqu'à 260 HB	•	74	0,126	0,155	0,195	0,234	0,251	0,280	0,314	0,377		
N	Métaux non ferreux	Aluminium	Alu jusqu'à 10% Si	0	233	0,140	0,172	0,216	0,260	0,279	0,312	0,349	0,419		
			Alu > 10% Si	0	205	0,126	0,155	0,195	0,234	0,251	0,280	0,314	0,377		
		Cuivre, laiton, bronze et l	aiton rouge	0	149	0,093	0,112	0,140	0,149	0,195	0,205	0,242	0,288		
S	Superal- liages et	Superalliages réfractaires	À base Fe, Ni et Co	0	23	0,032	0,043	0,047	0,051	0,063	0,079	0,095	0,111		
	alliages de titane	Titane pur		0	37	0,037	0,051	0,056	0,060	0,074	0,093	0,112	0,130		
	utane	Alliages de titane		0	28	0,032	0,043	0,047	0,051	0,063	0,079	0,095	0,111		
Н	Alliages de	Aciers traités et trempés	jusqu'à 50 HRC												
	titane		jusqu'à 58 HRC												
			> 58 HRC												
0	Autres	Matières thermoplastiqu													
		Plastiques thermodurciss Matières plastiques renfo PRFV/PRFC, graphite													

^{• =} parfaitement adapté

^{○ =} adapté


Foret en carbure monobloc universel U

Version 3xD - métrique

Foret en carbure monobloc à canaux de lubrification interne et revêtements ultramodernes pour une utilisation universelle sur de nombreux matériaux.

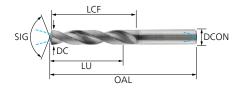
Caractéristiques:

- Double chanfrein d'appui périphérique pour un processus plus stable et des qualités de perçage de haute qualité.
- Avec canaux de lubrification pour optimiser la durée de vie ainsi que l'évacuation des copeaux.
- Traitement ultérieur des surfaces parfaitement adapté, pour des performances élevées.

HA avec refroidissement interne HA	39,39 39,39 39,39 39,39 39,39 39,39 39,39 39,39
3,1 6 62 14 20 2 1 23000495 SCD-U-3D-M03.100-14IC LA4C 3,2 6 62 14 20 2 1 23000496 SCD-U-3D-M03.200-14IC LA4C 3,3 6 62 14 20 2 1 23000497 SCD-U-3D-M03.300-14IC LA4C 3,4 6 62 14 20 2 1 23000498 SCD-U-3D-M03.400-14IC LA4C 3,5 6 62 14 20 2 1 23000499 SCD-U-3D-M03.500-14IC LA4C 3,6 6 62 14 20 2 1 23000500 SCD-U-3D-M03.600-14IC LA4C 3,7 6 62 14 20 2 1 23000500 SCD-U-3D-M03.600-14IC LA4C 3,8 6 66 17 24 2 1 23000501 SCD-U-3D-M03.800-17IC LA4C 3,9 6 66 17 24 2 1 23000503 SCD-U-3D-M03.900-17IC LA4C	39,39 39,39 39,39 39,39 39,39 39,39 39,39 39,39
3,2 6 62 14 20 2 1 23000496 SCD-U-3D-M03.200-14IC LA4C 3,3 6 62 14 20 2 1 23000497 SCD-U-3D-M03.300-14IC LA4C 3,4 6 62 14 20 2 1 23000498 SCD-U-3D-M03.400-14IC LA4C 3,5 6 62 14 20 2 1 23000499 SCD-U-3D-M03.500-14IC LA4C 3,6 6 62 14 20 2 1 23000500 SCD-U-3D-M03.600-14IC LA4C 3,7 6 62 14 20 2 1 23000500 SCD-U-3D-M03.600-14IC LA4C 3,7 6 62 14 20 2 1 23000501 SCD-U-3D-M03.700-14IC LA4C 3,8 6 66 17 24 2 1 23000502 SCD-U-3D-M03.800-17IC LA4C 3,9 6 66 17 24 2 1 23000503 SCD-U-3D-M03.900-17IC LA4C 4 6 66 17 24 2 1 23000504 SCD-U-3D-M03.900-17IC LA4C 4 6 66 17 24 2 1 23000504 SCD-U-3D-M04.000-17IC LA4C 4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.000-17IC LA4C 4,2 6 6 66 17 24 2 1 23000505 SCD-U-3D-M04.000-17IC LA4C 4,2 6 6 66 17 24 2 1 23000505 SCD-U-3D-M04.100-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 2 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 2 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 2 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17 2 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 6 66 17	39,39 39,39 39,39 39,39 39,39 39,39 39,39
3,3 6 6 62 14 20 2 1 23000497 SCD-U-3D-M03.300-14IC LA4C 3,4 6 62 14 20 2 1 23000498 SCD-U-3D-M03.400-14IC LA4C 3,5 6 62 14 20 2 1 23000499 SCD-U-3D-M03.500-14IC LA4C 3,6 6 62 14 20 2 1 23000500 SCD-U-3D-M03.600-14IC LA4C 3,7 6 62 14 20 2 1 23000501 SCD-U-3D-M03.600-14IC LA4C 3,7 6 62 14 20 2 1 23000501 SCD-U-3D-M03.700-14IC LA4C 3,8 6 66 17 24 2 1 23000502 SCD-U-3D-M03.800-17IC LA4C 3,9 6 66 17 24 2 1 23000503 SCD-U-3D-M03.900-17IC LA4C 4 6 66 17 24 2 1 23000504 SCD-U-3D-M03.900-17IC LA4C 4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.000-17IC LA4C 4,2 6 66 17 24 2 1 23000505 SCD-U-3D-M04.000-17IC LA4C 4,2 6 66 17 24 2 1 23000505 SCD-U-3D-M04.000-17IC LA4C 4,2 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C 4,2 6 666 17 24 2 1 23000506 SCD-U-3D-M04.2	39,39 39,39 39,39 39,39 39,39 39,39 39,39
3,4 6 62 14 20 2 1 23000498 SCD-U-3D-M03.400-14IC LA4C 3,5 6 62 14 20 2 1 23000499 SCD-U-3D-M03.500-14IC LA4C 3,6 6 62 14 20 2 1 23000500 SCD-U-3D-M03.600-14IC LA4C 3,7 6 62 14 20 2 1 23000501 SCD-U-3D-M03.700-14IC LA4C 3,8 6 66 17 24 2 1 23000502 SCD-U-3D-M03.800-17IC LA4C 3,9 6 66 17 24 2 1 23000503 SCD-U-3D-M03.900-17IC LA4C 4 6 66 17 24 2 1 23000504 SCD-U-3D-M04.000-17IC LA4C 4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.100-17IC LA4C 4,2 6 66 17 24 2 1 23000505 SCD-U-3D-M04.200-17IC LA4C <td>39,39 39,39 39,39 39,39 39,39 39,39</td>	39,39 39,39 39,39 39,39 39,39 39,39
3,5 6 62 14 20 2 1 23000499 SCD-U-3D-M03.500-14IC LA4C 3,6 6 62 14 20 2 1 23000500 SCD-U-3D-M03.600-14IC LA4C 3,7 6 62 14 20 2 1 23000501 SCD-U-3D-M03.700-14IC LA4C 3,8 6 66 17 24 2 1 23000502 SCD-U-3D-M03.800-17IC LA4C 3,9 6 66 17 24 2 1 23000503 SCD-U-3D-M03.900-17IC LA4C 4 6 66 17 24 2 1 23000504 SCD-U-3D-M04.000-17IC LA4C 4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.100-17IC LA4C 4,2 6 66 17 24 2 1 23000505 SCD-U-3D-M04.200-17IC LA4C	39,39 39,39 39,39 39,39 39,39
3,6 6 62 14 20 2 1 23000500 SCD-U-3D-M03.600-14IC LA4C 3,7 6 62 14 20 2 1 23000501 SCD-U-3D-M03.700-14IC LA4C 3,8 6 66 17 24 2 1 23000502 SCD-U-3D-M03.800-17IC LA4C 3,9 6 66 17 24 2 1 23000503 SCD-U-3D-M03.900-17IC LA4C 4 6 66 17 24 2 1 23000504 SCD-U-3D-M04.000-17IC LA4C 4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.100-17IC LA4C 4,2 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C	39,39 39,39 39,39 39,39
3,7 6 62 14 20 2 1 23000501 SCD-U-3D-M03.700-14IC LA4C 3,8 6 66 17 24 2 1 23000502 SCD-U-3D-M03.800-17IC LA4C 3,9 6 66 17 24 2 1 23000503 SCD-U-3D-M03.900-17IC LA4C 4 6 66 17 24 2 1 23000504 SCD-U-3D-M04.000-17IC LA4C 4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.100-17IC LA4C 4,2 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C	39,39 39,39 39,39
3,8 6 66 17 24 2 1 23000502 SCD-U-3D-M03.800-17IC LA4C 3,9 6 66 17 24 2 1 23000503 SCD-U-3D-M03.900-17IC LA4C 4 6 66 17 24 2 1 23000504 SCD-U-3D-M04.000-17IC LA4C 4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.100-17IC LA4C 4,2 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C	39,39 39,39
3,9 6 66 17 24 2 1 23000503 SCD-U-3D-M03.900-17IC LA4C 4 6 66 17 24 2 1 23000504 SCD-U-3D-M04.000-17IC LA4C 4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.100-17IC LA4C 4,2 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C	39,39
4 6 66 17 24 2 1 23000504 SCD-U-3D-M04.000-17IC LA4C 4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.100-17IC LA4C 4,2 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C	
4,1 6 66 17 24 2 1 23000505 SCD-U-3D-M04.100-17IC LA4C 4,2 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C	20.20
4,2 6 66 17 24 2 1 23000506 SCD-U-3D-M04.200-17IC LA4C	39,39
	39,39
4,3 6 66 17 24 2 1 23000507 SCD-U-3D-M04.300-17IC LA4C	39,39
	39,39
4,4 6 66 17 24 2 1 23000508 SCD-U-3D-M04.400-17IC LA40	39,39
4,5 6 66 17 24 2 1 23000509 SCD-U-3D-M04.500-17IC LA4C	39,39
4,6 6 66 17 24 2 1 23000510 SCD-U-3D-M04.600-17IC LA4C	39,39
4,7 6 66 17 24 2 1 23000511 SCD-U-3D-M04.700-17IC LA4C	39,39
4,8 6 66 20 28 2 1 23000512 SCD-U-3D-M04.800-20IC LA4C	39,39
4,9 6 66 20 28 2 1 23000513 SCD-U-3D-M04.900-20IC LA4C	39,39
5 6 66 20 28 2 1 23000514 SCD-U-3D-M05.000-20IC LA4C	39,39
5,1 6 66 20 28 2 1 23000515 SCD-U-3D-M05.100-20IC LA40	39,39
5,2 6 66 20 28 2 1 23000516 SCD-U-3D-M05.200-20IC LA4C	39,39
5,3 6 66 20 28 2 1 23000517 SCD-U-3D-M05.300-20IC LA4C	39,39
5,4 6 66 20 28 2 1 23000518 SCD-U-3D-M05.400-20IC LA4C	39,39
5,5 6 66 20 28 2 1 23000519 SCD-U-3D-M05.500-20IC LA4C	39,39
5,6 6 66 20 28 2 1 23000520 SCD-U-3D-M05.600-20IC LA4C	39,39
5,7 6 66 20 28 2 1 23000521 SCD-U-3D-M05.700-20IC LA4C	39,39
5,8 6 66 20 28 2 1 23000522 SCD-U-3D-M05.800-20IC LA40	39,39
5,9 6 66 20 28 2 1 23000523 SCD-U-3D-M05.900-20IC LA4C	39,39
6 6 66 20 28 2 1 23000524 SCD-U-3D-M06.000-20IC LA4C	39,39
6,2 8 79 24 34 2 1 23000525 SCD-U-3D-M06.200-24IC LA4C	47,25
6,3 8 79 24 34 2 1 23000526 SCD-U-3D-M06.300-24IC LA4C	47,25
6,4 8 79 24 34 2 1 23000527 SCD-U-3D-M06.400-24IC LA4C	47,25
6,5 8 79 24 34 2 1 23000528 SCD-U-3D-M06.500-24IC LA4C	47,25
6,6 8 79 24 34 2 1 23000529 SCD-U-3D-M06.600-24IC LA4C	47,25
6,7 8 79 24 34 2 1 23000530 SCD-U-3D-M06.700-24IC LA4C	47,25
6,8 8 79 24 34 2 1 23000531 SCD-U-3D-M06.800-24IC LA4C	47,25
6,9 8 79 24 34 2 1 23000532 SCD-U-3D-M06.900-24IC LA4C	47,25
7 8 79 24 34 2 1 23000533 SCD-U-3D-M07.000-24IC LA4C	47,25

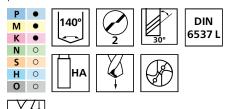
64 SCT Prix par pièce hors TVA.

Foret en carbure monobloc universel U


DC [mm]	DCON [mm]	OAL [mm]	LU [mm]	LCF [mm]	ZEFP		Réf. article	Désignation	Prix/pièce EUR
7,2	8	79	29	41	2	1	23000534	SCD-U-3D-M07.200-29IC LA40	47,25
7,3	8	79	29	41	2	1	23000535	SCD-U-3D-M07.300-29IC LA40	47,25
7,4	8	79	29	41	2	1	23000536	SCD-U-3D-M07.400-29IC LA40	47,25
7,5	8	79	29	41	2	1	23000537	SCD-U-3D-M07.500-29IC LA40	47,25
7,6	8	79	29	41	2	1	23000538	SCD-U-3D-M07.600-29IC LA40	47,25
7,7	8	79	29	41	2	1	23000539	SCD-U-3D-M07.700-29IC LA40	47,25
7,8	8	79	29	41	2	1	23000540	SCD-U-3D-M07.800-29IC LA40	47,25
7,9	8	79	29	41	2	1	23000541	SCD-U-3D-M07.900-29IC LA40	47,25
8	8	79	29	41	2	1	23000542	SCD-U-3D-M08.000-29IC LA40	47,25
8,1	10	89	35	47	2	1	23000543	SCD-U-3D-M08.100-35IC LA40	59,70
8,2	10	89	35	47	2	1	23000544	SCD-U-3D-M08.200-35IC LA40	59,70
8,3	10	89	35	47	2	1	23000545	SCD-U-3D-M08.300-35IC LA40	59,70
8,4	10	89	35	47	2	1	23000546	SCD-U-3D-M08.400-35IC LA40	59,70
8,5	10	89	35	47	2	1	23000547	SCD-U-3D-M08.500-35IC LA40	59,70
8,6	10	89	35	47	2	1	23000548	SCD-U-3D-M08.600-35IC LA40	59,70
8,7	10	89	35	47	2	1	23000549	SCD-U-3D-M08.700-35IC LA40	59,70
8,8	10	89	35	47	2	1	23000550	SCD-U-3D-M08.800-35IC LA40	59,70
9	10	89	35	47	2	1	23000551	SCD-U-3D-M09.000-35IC LA40	59,70
9,2	10	89	35	47	2	1	23000552	SCD-U-3D-M09.200-35IC LA40	59,70
9,3	10	89	35	47	2	1	23000553	SCD-U-3D-M09.300-35IC LA40	59,70
9,4	10	89	35	47	2	1	23000554	SCD-U-3D-M09.400-35IC LA40	59,70
9,5	10	89	35	47	2	1	23000555	SCD-U-3D-M09.500-35IC LA40	59,70
9,6	10	89	35	47	2	1	23000556	SCD-U-3D-M09.600-35IC LA40	59,70
9,8	10	89	35	47	2	1	23000557	SCD-U-3D-M09.800-35IC LA40	59,70
9,9	10	89	35	47	2	1	23000558	SCD-U-3D-M09.900-35IC LA40	59,70
10	10	89	35	47	2	1	23000559	SCD-U-3D-M10.000-35IC LA40	59,70
10,1	12	102	40	55	2	1	23000560	SCD-U-3D-M10.100-40IC LA40	81,39
10,2	12	102	40	55	2	1	23000561	SCD-U-3D-M10.200-40IC LA40	81,39
10,3	12	102	40	55	2	1	23000562	SCD-U-3D-M10.300-40IC LA40	81,39
10,4	12	102	40	55	2	11	23000563	SCD-U-3D-M10.400-40IC LA40	81,39
10,5	12	102	40	55	2	1	23000564	SCD-U-3D-M10.500-40IC LA40	81,39
10,8	12 12	102 102	40	55 55	2	1 1	23000565	SCD-U-3D-M10.800-40IC LA40	81,39
11 11,2	12	102	40	55	2	1	23000566 23000567	SCD-U-3D-M11.000-40IC LA40 SCD-U-3D-M11.200-40IC LA40	81,39
11,2	12	102	40	55	2	1	23000568		81,39
11,5		102	40	55			23000569	SCD-U-3D-M11.300-40IC LA40	81,39
11,5	12	102	40	55	2	1 1	23000569	SCD-U-3D-M11.500-40IC LA40 SCD-U-3D-M11.600-40IC LA40	81,39
	12	102	40	55		1	23000570	SCD-U-3D-M11.800-40IC LA40	81,39 81,39
11,8	12	102	40	55	2	1	23000571	SCD-U-3D-M11.000-40IC LA40	81,39
12,1	14	107	43	60	2	1	23000572	SCD-U-3D-M12.100-43IC LA40	111,06
12,1	14	107	43	60	2	1	23000574	SCD-U-3D-M12.200-43IC LA40	111,06
12,5	14	107	43	60	2	1	23000574	SCD-U-3D-M12.500-43IC LA40	111,06
12,7	14	107	43	60	2	1	23000576	SCD-U-3D-M12.700-43IC LA40	111,06
12,9	14	107	43	60	2	1	23000577	SCD-U-3D-M12.900-43IC LA40	111,06
13	14	107	43	60	2	1	23000578	SCD-U-3D-M13.000-43IC LA40	111,06
13,1	14	107	43	60	2	1	23000579	SCD-U-3D-M13.100-43IC LA40	111,06
13,5	14	107	43	60	2	1	23000580	SCD-U-3D-M13.500-43IC LA40	111,06
14	14	107	43	60	2	<u>·</u> 1	23000581	SCD-U-3D-M14.000-43IC LA40	111,06
14,1	16	115	45	65	2	1	23000582	SCD-U-3D-M14.100-45IC LA40	145,28
14,2	16	115	45	65	2	1	23000583	SCD-U-3D-M14.200-45IC LA40	145,28
14,5	16	115	45	65	2	1	23000584	SCD-U-3D-M14.500-45IC LA40	145,28
14,7	16	115	45	65	2	1	23000585	SCD-U-3D-M14.700-45IC LA40	145,28
15	16	115	45	65	2	1	23000586	SCD-U-3D-M15.000-45IC LA40	145,28
15,1	16	115	45	65	2	1	23000587	SCD-U-3D-M15.100-45IC LA40	145,28
Cuito voir pago								,	-

Suite voir page suivante

Foret en carbure monobloc universel U



DC [mm]	DCON [mm]	OAL [mm]	LU [mm]	LCF [mm]	ZEFP		Réf. article		Prix/pièce EUR
15,2	16	115	45	65	2	1	23000588	SCD-U-3D-M15.200-45IC LA40	145,28
15,5	16	115	45	65	2	1	23000589	SCD-U-3D-M15.500-45IC LA40	145,28
15,8	16	115	45	65	2	1	23000590	SCD-U-3D-M15.800-45IC LA40	145,28
16	16	115	45	65	2	1	23000591	SCD-U-3D-M16.000-45IC LA40	145,28

Version 5xD - métrique

Foret en carbure monobloc à canaux de lubrification interne et revêtements ultramodernes pour une utilisation universelle sur de nombreux matériaux.

Caractéristiques:

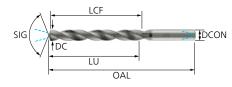
- Double chanfrein d'appui périphérique pour un processus plus stable et des qualités de perçage de haute qualité.
- Avec canaux de lubrification pour optimiser la durée de vie ainsi que l'évacuation des copeaux.
- Traitement ultérieur des surfaces parfaitement adapté, pour des performances élevées.

DC	DCON	OAL	LU	LCF	ZEFP	\square	Réf.	Désignation	
[mm]	[mm]	[mm]	[mm]	[mm]			article		EUR
			7] на				
HA avec re	efroidissem	nent intern	e C		J NA				
3	6	66	23	27	2	1	23000592	SCD-U-5D-M03.000-23IC LA40	49,22
3,1	6	66	23	27	2	1	23000593	SCD-U-5D-M03.100-23IC LA40	49,22
3,2	6	66	23	27	2	1	23000594	SCD-U-5D-M03.200-23IC LA40	49,22
3,3	6	66	23	27	2	1	23000595	SCD-U-5D-M03.300-23IC LA40	49,22
3,4	6	66	23	27	2	1	23000596	SCD-U-5D-M03.400-23IC LA40	49,22
3,5	6	66	23	27	2	1	23000597	SCD-U-5D-M03.500-23IC LA40	49,22
3,6	6	66	23	27	2	1	23000598	SCD-U-5D-M03.600-23IC LA40	49,22
3,7	6	66	23	27	2	1	23000599	SCD-U-5D-M03.700-23IC LA40	49,22
3,8	6	74	29	36	2	1	23000600	SCD-U-5D-M03.800-29IC LA40	49,22
3,9	6	74	29	36	2	1	23000601	SCD-U-5D-M03.900-29IC LA40	49,22
4	6	74	29	36	2	1	23000602	SCD-U-5D-M04.000-29IC LA40	49,22
4,1	6	74	29	36	2	1	23000603	SCD-U-5D-M04.100-29IC LA40	49,22
4,2	6	74	29	36	2	1	23000604	SCD-U-5D-M04.200-29IC LA40	49,22
4,3	6	74	29	36	2	1	23000605	SCD-U-5D-M04.300-29IC LA40	49,22
4,4	6	74	29	36	2	1	23000606	SCD-U-5D-M04.400-29IC LA40	49,22
4,5	6	74	29	36	2	1	23000607	SCD-U-5D-M04.500-29IC LA40	49,22
4,6	6	74	29	36	2	1	23000608	SCD-U-5D-M04.600-29IC LA40	49,22
4,7	6	74	29	36	2	1	23000609	SCD-U-5D-M04.700-29IC LA40	49,22
4,8	6	82	35	44	2	1	23000610	SCD-U-5D-M04.800-35IC LA40	49,22
4,9	6	82	35	44	2	1	23000611	SCD-U-5D-M04.900-35IC LA40	49,22
5	6	82	35	44	2	1	23000612	SCD-U-5D-M05.000-35IC LA40	49,22
5,1	6	82	35	44	2	1	23000613	SCD-U-5D-M05.100-35IC LA40	49,22
5,2	6	82	35	44	2	1	23000614	SCD-U-5D-M05.200-35IC LA40	49,22
5,3	6	82	35	44	2	1	23000615	SCD-U-5D-M05.300-35IC LA40	49,22
5,4	6	82	35	44	2	1	23000616	SCD-U-5D-M05.400-35IC LA40	49,22
5,5	6	82	35	44	2	1	23000617	SCD-U-5D-M05.500-35IC LA40	49,22
5,6	6	82	35	44	2	1	23000618	SCD-U-5D-M05.600-35IC LA40	49,22
5,7	6	82	35	44	2	1	23000619	SCD-U-5D-M05.700-35IC LA40	49,22
5,8	6	82	35	44	2	1	23000620	SCD-U-5D-M05.800-35IC LA40	49,22
5,9	6	82	35	44	2	1	23000621	SCD-U-5D-M05.900-35IC LA40	49,22
6	6	82	35	44	2	1	23000622	SCD-U-5D-M06.000-35IC LA40	49,22
6,1	8	91	43	53	2	1	23000623	SCD-U-5D-M06.100-43IC LA40	54,12
								Suite voir	page suivante

Suite voir page suivante

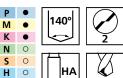
66 SCT Prix par pièce hors TVA.

Foret en carbure monobloc universel U


DC [mm]	DCON [mm]	OAL [mm]	LU [mm]	LCF [mm]	ZEFP		Réf. article	Désignation	Prix/pièce EUR
6,2	8	91	43	53	2	1	23000624	SCD-U-5D-M06.200-43IC LA40	54,12
6,3	8	91	43	53	2	1	23000625	SCD-U-5D-M06.300-43IC LA40	54,12
6,4	8	91	43	53	2	1	23000626	SCD-U-5D-M06.400-43IC LA40	54,12
6,5	8	91	43	53	2	1	23000627	SCD-U-5D-M06.500-43IC LA40	54,12
6,6	8	91	43	53	2	1	23000628	SCD-U-5D-M06.600-43IC LA40	54,12
6,7	8	91	43	53	2	1	23000629	SCD-U-5D-M06.700-43IC LA40	54,12
6,8	8	91	43	53	2	1	23000630	SCD-U-5D-M06.800-43IC LA40	54,12
6,9	8	91	43	53	2	1	23000631	SCD-U-5D-M06.900-43IC LA40	54,12
7	8	91	43	53	2	1	23000632	SCD-U-5D-M07.000-43IC LA40	54,12
7,2	8	91	43	53	2	1	23000633	SCD-U-5D-M07.200-43IC LA40	54,12
7,3	8	91	43	53	2	1	23000634	SCD-U-5D-M07.300-43IC LA40	54,12
7,4	8	91	43	53	2	1	23000635	SCD-U-5D-M07.400-43IC LA40	54,12
7,5	8	91	43	53	2	1	23000636	SCD-U-5D-M07.500-43IC LA40	54,12
7,6	8	91	43	53	2	1	23000637	SCD-U-5D-M07.600-43IC LA40	54,12
7,7	8	91	43	53	2	1	23000638	SCD-U-5D-M07.700-43IC LA40	54,12
7,8	8	91	43	53	2	1	23000639	SCD-U-5D-M07.800-43IC LA40	54,12
7,9	8	91	43	53	2	1	23000640	SCD-U-5D-M07.900-43IC LA40	54,12
8	8	91	43	53	2	1	23000641	SCD-U-5D-M08.000-43IC LA40	54,12
8,1	10	103	49	61	2	1	23000642	SCD-U-5D-M08.100-49IC LA40	68,87
8,2	10	103	49	61	2	1	23000643	SCD-U-5D-M08.200-49IC LA40	68,87
8,3	10	103	49	61	2	1	23000644	SCD-U-5D-M08.300-49IC LA40	68,87
8,4	10	103	49	61	2	1	23000645	SCD-U-5D-M08.400-49IC LA40	68,87
8,5	10	103	49	61	2	1	23000646	SCD-U-5D-M08.500-49IC LA40	68,87
8,6	10	103	49	61	2	1	23000647	SCD-U-5D-M08.600-49IC LA40	68,87
8,7	10	103	49	61	2	1	23000648	SCD-U-5D-M08.700-49IC LA40	68,87
8,8	10	103	49	61	2	1	23000649	SCD-U-5D-M08.800-49IC LA40	68,87
9	10	103	49	61	2	1	23000650	SCD-U-5D-M09.000-49IC LA40	68,87
9,2	10	103	49	61	2	1	23000651	SCD-U-5D-M09.200-49IC LA40	68,87
9,3	10	103	49	61	2	1	23000652	SCD-U-5D-M09.300-49IC LA40	68,87
9,4	10	103	49	61	2	1	23000653	SCD-U-5D-M09.400-49IC LA40	68,87
9,5	10	103	49	61	2	1	23000654	SCD-U-5D-M09.500-49IC LA40	68,87
9,6	10	103	49	61	2	1	23000655	SCD-U-5D-M09.600-49IC LA40	68,87
9,8	10	103	49	61	2	1	23000656	SCD-U-5D-M09.800-49IC LA40	68,87
9,9	10	103	49	61	2	1	23000657	SCD-U-5D-M09.900-49IC LA40	68,87
10	10	103	49	61	2	1	23000658	SCD-U-5D-M10.000-49IC LA40	68,87
10,1	12	118	56	71	2	1	23000659	SCD-U-5D-M10.100-56IC LA40	98,05
10,2	12	118	56	71	2	1	23000660	SCD-U-5D-M10.200-56IC LA40	98,05
10,3	12	118	56	71	2	11	23000661	SCD-U-5D-M10.300-56IC LA40	98,05
10,4	12	118	56	71	2	11	23000662	SCD-U-5D-M10.400-56IC LA40	98,05
10,5	12	118	56	71	2	1	23000663	SCD-U-5D-M10.500-56IC LA40	98,05
10,8	12	118	56	71	2	11	23000664	SCD-U-5D-M10.800-56IC LA40	98,05
11	12	118	56	71	2	1	23000665	SCD-U-5D-M11.000-56IC LA40	98,05
11,2	12	118	56	71	2	1	23000666	SCD-U-5D-M11.200-56IC LA40	98,05
11,3	12	118	56	71	2	1	23000667	SCD-U-5D-M11.300-56IC LA40	98,05
11,5	12	118	56	71	2	1	23000668	SCD-U-5D-M11.500-56IC LA40	98,05
11,6	12	118	56	71	2	1	23000669	SCD-U-5D-M11.600-56IC LA40	98,05
11,8	12	118	56	71	2	1	23000670	SCD-U-5D-M11.800-56IC LA40	98,05
12	12	118	56	71	2	1	23000671	SCD-U-5D-M12.000-56IC LA40	98,05
12,1	14	124	60	77	2	1 1	23000672	SCD-U-5D-M12.100-60IC LA40	127,79
12,2		124	60		2		23000674	SCD-U-5D-M12.200-60IC LA40	127,79
12,5	14	124	60	77	2	1 1	23000674	SCD-U-5D-M12.500-60IC LA40	127,79
12,7	14	124 124	60	77 77	2	1 1	23000675 23000676	SCD-U-5D-M12.700-60IC LA40	127,79 127,79
12,9	14	124	60	77	2	1	23000676	SCD-U-5D-M12.900-60IC LA40 SCD-U-5D-M13.000-60IC LA40	127,79
Suite voir page		124	00	11		ı	23000017	3CD-0-3D-10113.000-001C LA40	121,13

Suite voir page suivante

Foret en carbure monobloc universel U



DC [mm]	DCON [mm]	OAL [mm]	LU [mm]	LCF [mm]	ZEFP		Réf. article	Désignation	Prix/pièce EUR
13,1	14	124	60	77	2	1	23000678	SCD-U-5D-M13.100-60IC LA40	127,79
13,3	14	124	60	77	2	1	23000679	SCD-U-5D-M13.300-60IC LA40	127,79
13,5	14	124	60	77	2	1	23000680	SCD-U-5D-M13.500-60IC LA40	127,79
13,8	14	124	60	77	2	1	23000681	SCD-U-5D-M13.800-60IC LA40	127,79
14	14	124	60	77	2	1	23000682	SCD-U-5D-M14.000-60IC LA40	127,79
14,1	16	133	63	83	2	1	23000683	SCD-U-5D-M14.100-63IC LA40	167,11
14,2	16	133	63	83	2	1	23000684	SCD-U-5D-M14.200-63IC LA40	167,11
14,5	16	133	63	83	2	1	23000685	SCD-U-5D-M14.500-63IC LA40	167,11
14,7	16	133	63	83	2	1	23000686	SCD-U-5D-M14.700-63IC LA40	167,11
14,8	16	133	63	83	2	1	23000687	SCD-U-5D-M14.800-63IC LA40	167,11
15	16	133	63	83	2	1	23000688	SCD-U-5D-M15.000-63IC LA40	167,11
15,1	16	133	63	83	2	1	23000689	SCD-U-5D-M15.100-63IC LA40	167,11
15,2	16	133	63	83	2	1	23000690	SCD-U-5D-M15.200-63IC LA40	167,11
15,5	16	133	63	83	2	1	23000691	SCD-U-5D-M15.500-63IC LA40	167,11
15,8	16	133	63	83	2	1	23000692	SCD-U-5D-M15.800-63IC LA40	167,11
16	16	133	63	83	2	1	23000693	SCD-U-5D-M16.000-63IC LA40	167,11

Version 8xD - métrique

Foret en carbure monobloc à canaux de lubrification interne et revêtements ultramodernes pour une utilisation universelle sur de nombreux matériaux.

0 0

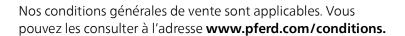
- Double chanfrein d'appui périphérique pour un processus plus stable et des qualités de perçage de haute qualité.
- Avec canaux de lubrification pour optimiser la durée de vie ainsi que l'évacuation des copeaux.
- Traitement ultérieur des surfaces parfaitement adapté, pour des performances élevées.

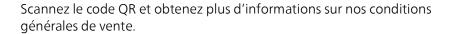
DC	DCON	OAL	LU	LCF	ZEFP		Réf.	Désignation	Prix/pièce	
[mm]	[mm]	[mm]	[mm]	[mm]			article		EUR	
HA avec re	HA avec refroidissement interne HA									
3	6	74	29	35	2	1	23000694	SCD-U-8D-M03.000-29IC LA40	65,77	
3,2	6	74	30	35	2	1	23000695	SCD-U-8D-M03.200-30IC LA40	65,77	
3,3	6	74	30	35	2	1	23000696	SCD-U-8D-M03.300-30IC LA40	65,77	
3,4	6	74	30	35	2	1	23000697	SCD-U-8D-M03.400-30IC LA40	65,77	
3,5	6	74	30	35	2	1	23000698	SCD-U-8D-M03.500-30IC LA40	65,77	
3,6	6	74	30	35	2	1	23000699	SCD-U-8D-M03.600-30IC LA40	65,77	
3,7	6	74	30	35	2	1	23000700	SCD-U-8D-M03.700-30IC LA40	65,77	
3,8	6	82	37	44	2	1	23000701	SCD-U-8D-M03.800-37IC LA40	65,77	
3,9	6	82	37	44	2	1	23000702	SCD-U-8D-M03.900-37IC LA40	65,77	
4	6	82	37	44	2	1	23000703	SCD-U-8D-M04.000-37IC LA40	65,77	
4,1	6	82	37	44	2	1	23000704	SCD-U-8D-M04.100-37IC LA40	65,77	
4,2	6	82	37	44	2	1	23000705	SCD-U-8D-M04.200-37IC LA40	65,77	
4,3	6	82	37	44	2	1	23000706	SCD-U-8D-M04.300-37IC LA40	65,77	
4,5	6	82	37	44	2	1	23000707	SCD-U-8D-M04.500-37IC LA40	65,77	
5	6	95	48	57	2	1	23000708	SCD-U-8D-M05.000-48IC LA40	65,77	
5,1	6	95	48	57	2	1	23000709	SCD-U-8D-M05.100-48IC LA40	65,77	
5,2	6	95	48	57	2	1	23000710	SCD-U-8D-M05.200-48IC LA40	65,77	
5,3	6	95	48	57	2	1	23000711	SCD-U-8D-M05.300-48IC LA40	65,77	
5,5	6	95	48	57	2	1	23000712	SCD-U-8D-M05.500-48IC LA40	65,77	
5,6	6	95	48	57	2	1	23000713	SCD-U-8D-M05.600-48IC LA40	65,77	

Suite voir page suivante

68 SCT Prix par pièce hors TVA.

Foret en carbure monobloc universel U



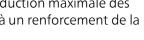

DC	DCON	OAL	LU	LCF	ZEFP		Réf.	Désignation	Prix/pièce
[mm]	[mm]	[mm]	[mm]	[mm]			article		EUR
5,8	6	95	48	57	2	1	23000714	SCD-U-8D-M05.800-48IC LA40	65,77
6	6	95	48	57	2	1	23000715	SCD-U-8D-M06.000-48IC LA40	65,77
6,2	8	114	66	76	2	1	23000716	SCD-U-8D-M06.200-66IC LA40	79,28
6,5	8	114	66	76	2	1	23000717	SCD-U-8D-M06.500-66IC LA40	79,28
6,6	8	114	66	76	2	1	23000718	SCD-U-8D-M06.600-66IC LA40	79,28
6,8	8	114	66	76	2	1	23000719	SCD-U-8D-M06.800-66IC LA40	79,28
6,9	8	114	66	76	2	1	23000720	SCD-U-8D-M06.900-66IC LA40	79,28
7	8	114	66	76	2	1	23000721	SCD-U-8D-M07.000-66IC LA40	79,28
7,4	8	114	66	76	2	1	23000722	SCD-U-8D-M07.400-66IC LA40	79,28
7,5	8	114	66	76	2	1	23000723	SCD-U-8D-M07.500-66IC LA40	79,28
7,8	8	114	66	76	2	1	23000724	SCD-U-8D-M07.800-66IC LA40	79,28
8	8	114	66	76	2	1	23000725	SCD-U-8D-M08.000-66IC LA40	79,28
8,1	10	138	84	96	2	1	23000726	SCD-U-8D-M08.100-84IC LA40	99,87
8,2	10	138	84	96	2	1	23000727	SCD-U-8D-M08.200-84IC LA40	99,87
8,5	10	138	84	96	2	1	23000728	SCD-U-8D-M08.500-84IC LA40	99,87
8,6	10	138	84	96	2	1	23000729	SCD-U-8D-M08.600-84IC LA40	99,87
8,7	10	138	84	96	2	1	23000730	SCD-U-8D-M08.700-84IC LA40	99,87
8,8	10	138	84	96	2	1	23000731	SCD-U-8D-M08.800-84IC LA40	99,87
9	10	138	84	96	2	1	23000732	SCD-U-8D-M09.000-84IC LA40	99,87
9,5	10	138	84	96	2	1	23000733	SCD-U-8D-M09.500-84IC LA40	99,87
9,6	10	138	84	96	2	1	23000734	SCD-U-8D-M09.600-84IC LA40	99,87
9,8	10	138	84	96	2	1	23000735	SCD-U-8D-M09.800-84IC LA40	99,87
9,9	10	138	84	96	2	1	23000736	SCD-U-8D-M09.900-84IC LA40	99,87
10	10	138	84	96	2	1	23000737	SCD-U-8D-M10.000-84IC LA40	99,87
10,2	12	162	100	115	2	1	23000738	SCD-U-8D-M10.200-100IC LA40	135,50
10,3	12	162	100	115	2	1	23000739	SCD-U-8D-M10.300-100IC LA40	135,50
10,5	12	162	100	115	2	1	23000740	SCD-U-8D-M10.500-100IC LA40	135,50
11	12	162	100	115	2	1	23000741	SCD-U-8D-M11.000-100IC LA40	135,50
11,2	12	162	100	115	2	1	23000742	SCD-U-8D-M11.200-100IC LA40	135,50
11,5	12	162	100	115	2	1	23000743	SCD-U-8D-M11.500-100IC LA40	135,50
11,8	12	162	100	115	2	1	23000744	SCD-U-8D-M11.800-100IC LA40	135,50
12	12	162	100	115	2	1	23000745	SCD-U-8D-M12.000-100IC LA40	135,50
12,5	14	181	117	134	2	1	23000746	SCD-U-8D-M12.500-117IC LA40	185,76
13	14	181	117	134	2	1	23000747	SCD-U-8D-M13.000-117IC LA40	185,76
13,1	14	181	117	134	2	1	23000748	SCD-U-8D-M13.100-117IC LA40	185,76
13,5	14	181	117	134	2	1	23000749	SCD-U-8D-M13.500-117IC LA40	185,76
14	14	181	117	134	2	1	23000750	SCD-U-8D-M14.000-117IC LA40	185,76
14,5	16	203	133	153	2	1	23000751	SCD-U-8D-M14.500-133IC LA40	242,38
15	16	203	133	153	2	1	23000752	SCD-U-8D-M15.000-133IC LA40	242,38
15,5	16	203	133	153	2	1	23000753	SCD-U-8D-M15.500-133IC LA40	242,38
16	16	203	133	153	2	1	23000774	SCD-U-8D-M16.000-133IC LA40	242,38

Prix par pièce hors TVA.

Conditions générales de vente

Nouveautés de la gamme **PFERD TOOLS**

Restez toujours au courant et découvrez nos nouveautés en version numérique sur le Web.



Règlement CE REACH (1907/2006/CE)

L'objectif du règlement REACH (enregistrement, évaluation, autorisation des substances chimiques) vise à une réduction maximale des risques et dangers dus aux substances chimiques et à un renforcement de la sécurité de l'homme et l'environnement.

Vous trouverez des informations sur les outils PFERD TOOLS au sens de la directive européenne REACH sur notre site Internet www.pferd.com/reach.

Service de réparation PFERD

Une équipe expérimentée veille au traitement rapide des réparations et demandes de pièces de rechange dans notre usine de Marienheide.

Veuillez nous envoyer vos questions à l'adresse :

pferd.power.tools@pferd.com